Marriage of microscopy techniques reveals 3D structure of critical protein complex

Researchers married two advanced microscopy techniques to render the likeness of the synaptonemal complex.

Researchers at the Stowers Institute for Medical Research have solved the three-dimensional structure of a complex that is essential for the correct sorting of chromosomes into eggs and sperm during reproductive cell division or meiosis.

When this structure, called the synaptonemal complex, doesn't assemble properly in the cell, it can lead to chromosomal abnormalities, miscarriages, and birth defects.

Since the synaptonemal complex was first discovered in 1956, researchers have been trying to identify its many moving parts and how they fit together. Their efforts have been limited by the laws of physics: the structure is too small to be visualized by even the most high-power microscopes.

Now, Stowers researchers, including Cori Cahoon, Zulin Yu, Ph.D., and Yongfu Wang, Ph.D., have married two advanced microscopy techniques - one that enlarges samples to several times their original size and another that uses computers to capture what the human eye cannot see - to render the likeness of this enigmatic structure. Their findings, reported in the July 31, 2017 online early edition of the Proceedings of the National Academy of Sciences, were not at all what they expected. (Read more at the Stowers Institute for Medical Research)

More in Bioimaging