Oxford Nanopore develops portable DNA sequencing device

file
It’s been nearly a year since the first portable DNA sequencers were shipped to giddy researchers waiting to be untethered from the refrigerator-sized machines in their labs. Now a desktop version by the same maker, Oxford Nanopore, is heading their way, with the first shipments to be sent by the end of this month.
Read More at Inside Technology - IEEE Spectrum
The BioOptics World take on this story:

England-based Oxford Nanopore has developed a portable DNA sequencing device, with the goal of building an "Internet of living things." The device, called MinION, is small enough to fit in a coat pocket, costs about $1000, and connects to a laptop computer via a standard USB port. It can be used in developing countries to, for example, study Ebola outbreaks and antibiotic resistance.

First shipments of the device are expected to be sent by the end of March 2016.

Related: DNA sequencing technologies: The next generation and beyond

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Photoacoustic imaging quantifies elasticity

Biomedical engineers in the US have developed a form of photoacoustic imaging that can quantify the elasticity of human tissue.

Laser therapy extracts rare tumor that grew human hair, skin in boy's skull

About four years ago, a tumor comprised of human skin, hair, bone and cartilage was fast-growing inside a Ramsey, MN, 10-year-old youth's brain.
BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS