3D Microscopy: Single-objective SPIM simplifies super-resolution 3D cell imaging

A simplified super-resolution microscopy method can identify single proteins anywhere within a cell, and allows assessment of cellular organization in 3D.1

Recent advances have enabled super-resolution imaging of biological samples in 3D for extended periods without damaging the sample. This means that the activity of single proteins can be followed within individual cells, providing new insight into protein function and, importantly, how protein dysregulation can lead to disease. Unfortunately, these techniques are complicated and expensive, and most of those that enable single-molecule imaging capture images only within the first micrometer of the coverslip—whereas a typical human skin cell is 30 μm thick.

With soSPIM, microfabricated wells hold cells in place for imaging (a). Micromirrors positioned at 45° reflect the excitation beam (dotted line) from a single objective through the sample; the same objective captures the fluorescence signal (b).

And while selective plane illumination microscopy (SPIM) enables 3D super-resolution imaging of thicker samples at a single-cell level, it requires a two-objective system and sample holder that is incompatible with standard microscopes. But an updated approach, called single-objective SPIM (soSPIM), requires just one objective. Developed by associate professor Virgile Viasnoff of the Mechanobiology Institute (MBI) at the National University of Singapore, soSPIM uses an array of micromirrored wells: Each mirror is inclined at precisely 45°, and serves as both a means to direct the excitation beam and to hold the sample. Together with a beam-steering add-on unit, these micromirrors enable the excitation beam and the fluorescence signal to pass through a single standard objective lens.

Compatible with standard inverted microscopes and high-numerical-aperture immersion objective lenses, soSPIM has exhibited fast response, good sectioning capability for 3D imaging of whole cells up to 30 μm above the coverslip, and the ability to identify single proteins deep within cells.

1. R. Galland et al., Nat. Methods, 12, 641–644 (2015); doi:10.1038/nmeth.3402.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Microscope detects one million-plus biomarkers for sepsis in 30 minutes

A microscope has the potential to simultaneously detect more than one million biomarkers for sepsis at the point of care.

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

Adaptive optics enhances super-resolution microscopy for cell imaging

A new ultra-high resolution nanoscope can take 3D images of an entire cell and its cellular constituents in unprecedented detail.

Fluorescence microscopy approach captures three views of a sample simultaneously

A new fluorescence microscopy approach improves image resolution by acquiring three views of a sample at the same time.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World