Think fast!

Can you control objects with your brain? Visitors to the Hamamatsu Photonics booth during SPIE Photonics West 2015 could—and did, with a little help from a system based on near-infrared spectroscopy (NIRS).

Hamamatsu's display included the Brain Machine Interface: a double-track toy car racing game setup that challenged pairs of participants to square off. The "racers" each donned an electronic headband, incorporating a NIRS optical probe, able to wirelessly send signals to one of the cars on the track (see Fig. 1). Consisting of an emitter and detector, the probe monitors absorption of IR light in cerebral tissue. The headband positions the probe over the left prefrontal lobe, keeping extraneous light out and transmitted NIR light in. Optical densities from three continuous wavelengths of NIR light (735, 810, and 850 nm) indicate changes in tissue oxyhemoglobin and deoxyhemoglobin over time.

FIGURE 1. At SPIE Photonics West 2015, Hamamatsu's booth featured a double-track toy car racing game setup that involved two "racer" participants, who would each wear an electronic headband incorporating a NIRS optical probe able to wirelessly send signals to one of the cars on the track.

By concentrating on the car—red or white—for which s/he was responsible, each driver was able to increase the vehicle's speed. Race fans could not only watch how fast the cars zoomed around the track, they could also see real-time changes in blood oxygenation in the participants' brains, as represented by color in side-by-side brain diagrams (each with a corresponding with speedometer) on a large computer monitor. A brain diagram heavy on cool colors (blue or green) indicated that the participant's brain—and car—was at rest, while a representation with orange or red indicated concentration corresponding to greater oxygenation-and speed (see Fig. 2). In effect, the display showed the change in concentration of oxygenated hemoglobin (ΔO2Hb) and deoxygenated hemoglobin (ΔHHb).

FIGURE 2. Attendees who passed by Hamamatsu's booth could not only watch how fast the cars zoomed around the track, they could also see real-time changes in blood oxygenation in the Brain Machine Interface participants' brains, as represented by color in side-by-side brain diagrams (each with a corresponding with speedometer) on a large computer monitor.

Besides mind-controlled car racing, the technology behind the game has some practical biomedical applications, including patient monitoring in hospitals; management of tissue oxygenation during surgery; and clinical studies relation to brain function, brain metabolism, and muscle function.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Optical sensor could assist with needle placement for epidurals, other procedures

A newly developed optical sensor can be embedded into an epidural needle, helping to guide the needle to the correct location.  

Spectroscopy: Raman spectroscopy advances for biomedical applications

Raman spectroscopy offers unique analytical capabilities applicable to a wide array of life science applications.

Multispectral method is noninvasive for imaging tissue oxygenation

A new multispectral approach for imaging tissue oxygenation could eliminate the need for surgical intervention.

Raman spectroscopy can help study blood stored in plastic blood bags

Raman spectroscopy can help study blood stored in plastic blood bags

Raman spectroscopy can monitor biochemical changes and inter-donor variability in stored red blood cell units.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS