MULTIPHOTON IMAGING/SPECTROSCOPY: Iterative, nonlinear approach images noninvasively through intact skull

A major limitation of optical measurement in biological tissue is that imaging depth is limited by aberration and light scattering. Adaptive optics (AO) and other methods can help to overcome these factors, but impose their own limitations. To meet these challenges, Meng Cui and Lingie Kong of Howard Hughes Medical Institute's Janelia Research Campus have developed an iterative multiphoton adaptive compensation technique (IMPACT), which uses iterative feedback and nonlinearity to quickly measure wavefront in a highly scattering environment.1

Maximum intensity projection of S1 layer-5 neurons at 654–662 μm depth under the dura of an awake mouse, imaged with correcting both system- and tissue-induced wavefront distortions (a), and system-induced distortion only (b), respectively. The arrow points out a spine, which is invisible in (b). The soma is marked with the asterisk. A 3D rendering of a neuron dendrite was imaged through the intact skull of adult mice in vivo with IMPACT (c). The thickness of the skull is ~120 μm, and the dendrite is 110 μm beneath the bottom of the skull. Without wavefront correction, the structure is buried in background noise and completely invisible. The compensation wavefront used in (c) is shown in (d)
Maximum intensity projection of S1 layer-5 neurons at 654–662 μm depth under the dura of an awake mouse, imaged with correcting both system- and tissue-induced wavefront distortions (a), and system-induced distortion only (b), respectively. The arrow points out a spine, which is invisible in (b). The soma is marked with the asterisk. A 3D rendering of a neuron dendrite was imaged through the intact skull of adult mice in vivo with IMPACT (c). The thickness of the skull is ~120 μm, and the dendrite is 110 μm beneath the bottom of the skull. Without wavefront correction, the structure is buried in background noise and completely invisible. The compensation wavefront used in (c) is shown in (d).

A new paper reports recent progress of applying IMPACT to functional imaging of the cortex to ~660 μm, through the intact skull, in awake mice. In experiments, the technique's high-speed operation (the wavefront can be updated at ~8 kHz and beating frequency is distributed between 2 and 4 kHz) were shown to work well for imaging awake, head-restrained animals, which is challenging for AO. IMPACT compensates wavefront distortion with a large number of spatial modes and does not require taking multiple images; instead, IMPACT maximizes nonlinear (second, third, and higher order) signals, which derives from the laser focus. But laser power during is similar to the actual imaging power, and experiments on GFP- and YFP-expressing samples showed no photobleaching or phototoxicity.

Although the paper mainly discusses imaging applications, the researchers report that IMPACT can also be used for spectroscopy applications to achieve greater signal-to-noise ratio or shorten the measurement time.

1. L. Kong and M. Cui, Opt. Exp., 22, 20, 23786–23794 (2014); doi:10.1364/OE.22.023786.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Microscope detects one million-plus biomarkers for sepsis in 30 minutes

A microscope has the potential to simultaneously detect more than one million biomarkers for sepsis at the point of care.

Eye test that pairs two in vivo imaging methods may detect Parkinson's earlier

A low-cost, noninvasive eye test pairs two in vivo imaging methods to help detect Parkinson's before clinical symptoms appear.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World