DIABETES MANAGEMENT: Novel design helps photoacoustic spectroscopy clear hurdles to noninvasive glucose measurement

A new noninvasive approach to blood glucose monitoring uses photoacoustic spectroscopy (PAS): a painless pulse of laser light, applied externally to the skin, is absorbed by glucose molecules and creates a measurable sound signature that reads sugar levels in the fluid in and under skin cells in seconds.

The approach was devised by researchers at Biophysics Institute at the University of Frankfurt (Germany).1 Data showing the skin cell glucose levels at one-hundredth of a millimeter beneath the skin is related to blood glucose levels, said lead researcher Werner Mäntele, Ph.D., but previous attempts to use PAS in this manner have been hampered by distortion related to changes of air pressure, temperature, and humidity caused by the contact with living skin.

To overcome these constraints, the team used an open, windowless cavity architecture tuned for optimum performance in the ultrasound range between 50 and 60 kHz. In combination with an external cavity tunable quantum cascade laser emitting from ~1000 to 1245 cm-1, the approach enables a high signal-to-noise-ratio (SNR) for mid-infrared (mid-IR) spectra of human skin. This facilitates measurement in situ the absorption spectrum of human epidermis in the mid-IR region at high SNR in just a few seconds. While the design is still experimental and would have to be tested and approved by regulatory agencies before becoming commercially available, the team continues to refine it. In a close collaboration with an industry partner (Elte Sensoric; Gelnhausen, Germany), they expect to have a small shoebox-sized device ready in three years, followed by a portable glucometer.

1. M. A. Pleitez et al., Rev. Sci. Instrum., 84, 084901 (2013); http://dx.doi.org/10.1063/1.4816723.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Merz acquires laser tattoo removal device maker ON Light Sciences

Merz North America has acquired ON Light Sciences, which develops technologies to enhance laser-based dermatology procedures.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Laser therapy extracts rare tumor that grew human hair, skin in boy's skull

About four years ago, a tumor comprised of human skin, hair, bone and cartilage was fast-growing inside a Ramsey, MN, 10-year-old youth's brain.

Low-level laser therapy could speed muscle recovery at Rio 2016 Olympics

The gold medal-winning women’s U.S. Gymnastics team is reportedly experimenting with infrared light therapy to alleviate pain and reduce swelling in its athletes. (Update: A spokesperson for ...

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS