BIOMEDICAL IMAGING/X-RAY: Lasers replace accelerator, magnets in device that makes synchrotron x-rays widely accessible

Synchrotron x-rays boost the quality of medical imaging and lower doses of radiation compared to x-ray devices currently used in hospitals worldwide. But synchotron x-ray devices have traditionally been too large and expensive to be widely accessible. Now, researchers at the University of Nebraska-Lincoln's (UNL) Extreme Light Laboratory have developed a new way to generate these x-rays using a powerful, compact laser.1

Physics professor Donald Umstadter, project director, and doctoral student Nathan Powers, first author, are part of a research team that has created a laser-driven synchrotron x-ray device
Physics professor Donald Umstadter, project director, and doctoral student Nathan Powers, first author, are part of a research team that has created a laser-driven synchrotron x-ray device.

Physics professor Donald Umstadter, director of the Extreme Light Laboratory, led the research project. He compares the synchrotron x-ray breakthrough to the development of personal computers, giving more people access to power once available only via large and costly mainframes. Shrinking components of advanced laser-based technology will increase the feasibility of producing high-quality x-rays in medical and university research laboratories, which in turn could lead to new applications for the x-rays, he says.

Because the new x-ray device could fit in a hospital or truck, it could facilitate widespread applications for advanced x-ray technology, including the ability to find cancerous tumors at earlier stages or study extremely fast reactions that occur too rapidly for observation with conventional x-rays.

Doctoral student Nathan Powers displays the electron accelerator used to generate x-ray light
Doctoral student Nathan Powers displays the electron accelerator used to generate x-ray light. (Both photos courtesy of Greg Nathan/University Communications)

In traditional synchrotron machines, electrons are accelerated to extremely high energy and then made to change direction periodically, leading them to emit energy at x-ray wavelength. Magnets change the direction of the electrons and produce x-rays.

The UNL team replaced both the electron accelerator and the magnets with laser light. They first focused their laser beam onto a gas jet, creating a beam of relativistic electrons. They then focused another laser beam onto the accelerated electron beam. This rapidly vibrated the electrons, causing them to emit a bright burst of synchrotron x-rays—a process referred to as Compton scattering. Remarkably, the light's photon energy was increased during this process by a million-fold. And yet, the combined length of the accelerator and synchrotron was less than the size of a dime.

"The x-rays that were previously generated with compact lasers lacked several of the distinguishing characteristics of synchrotron light, such as a relatively pure and tunable color spectrum," Umstadter says. "Instead, those x-rays resembled the 'white light' emitted by the sun." The new laser-driven device produces x-rays over a much larger range of photon energies, extending to the energy of nuclear gamma rays. Even fewer conventional synchrotron x-ray sources are capable of producing such high photon energy.

Key to the breakthrough was finding a way to collide the two micro-thin beams—the scattering laser beam and the laser-accelerated electron beam.

1. N. D. Powers et al., Nat. Photon., 8, 28–31 (2014); doi:10.1038/nphoton.2013.314.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Merz acquires laser tattoo removal device maker ON Light Sciences

Merz North America has acquired ON Light Sciences, which develops technologies to enhance laser-based dermatology procedures.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Laser therapy extracts rare tumor that grew human hair, skin in boy's skull

About four years ago, a tumor comprised of human skin, hair, bone and cartilage was fast-growing inside a Ramsey, MN, 10-year-old youth's brain.

Low-level laser therapy could speed muscle recovery at Rio 2016 Olympics

The gold medal-winning women’s U.S. Gymnastics team is reportedly experimenting with infrared light therapy to alleviate pain and reduce swelling in its athletes. (Update: A spokesperson for ...
BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World