STIMULATED RAMAN SCATTERING MICROSCOPY: Vibrational microscopy method generates high-res images of nascent proteins in living cells

Researchers at Columbia University (New York, NY) report a method that enables something never before achieved: selective, high-resolution visualization of newly synthesized proteins in living biological systems.1 The breakthrough has broad implications because the ability to directly visualize and quantify budding proteins at a global (i.e., proteome) level is extremely valuable for understanding the metabolic activities of living cells. Such spatio-temporal characteristics of protein synthesis are critical determinants in such intricate biological processes as cell growth, differentiation, disease, and stimulus response. For instance, long-lasting forms of synaptic plasticity, such as those underlying long-term memory, require new protein synthesis in a space- and time-dependent manner. In terms of neurological diseases, excessive synaptic protein synthesis has recently been proposed as one mechanism contributing to autism (a devastating neurodevelopmental disorder) in humans.

Stimulated Raman scattering imaging of newly synthesized protein in live HeLa cells incubated in a deuterium-labeled amino acid medium for 20 hours by targeting the 2133 cm-1 vibrational peak of C-D stretching
Stimulated Raman scattering imaging of newly synthesized protein in live HeLa cells incubated in a deuterium-labeled amino acid medium for 20 hours by targeting the 2133 cm-1 vibrational peak of C-D stretching. (Image courtesy of Lu Wei)

The Columbia team's technique involves stimulated Raman scattering (SRS) microscopy, along with metabolic incorporation of deuterium-labeled amino acids. By detecting the unique vibrational signature of carbon-deuterium (C-D) bonds carried by the amino acid building blocks, the technique allows visualization of newly synthesized proteins and clear identification of subcellular compartments with fast protein turnover (e.g., in HeLa and HEK293T cells), and differentiation of newly grown neurites in neuron-like N2A cells. As a first demonstration, the researchers created high (spatial-temporal) resolution images of nascent proteins in live mammalian cells.

According to Lu Wei, the lead author of the study, "our work represents the first time that nonlinear vibrational microscopy has been used to visualize the metabolic incorporation of isotope labeled precursors of macromolecules." She adds that incorporation of deuterium-labeled amino acids is minimally perturbative to live cells, and SRS imaging of exogenous C-D bonds in the cell-silent Raman region is highly sensitive, specific, and compatible with living systems under physiological conditions—without requiring fixation or staining.

Assistant Professor Wei Min, who led the work, notes that the biocompatiblility of deuterium labeling, along with SRS imaging, enables the possibility of monitoring protein synthesis in more complex systems such as live tissues and animals. He is currently working towards this exciting goal, and foresees that the technique "will be a valuable imaging tool for biomedical researchers to probe the complex spatial and temporal dynamics of proteomes in vivo."

1. L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, Proc. Nat. Acad. Sci., 110, 28, 11226–11231 (2013).

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.

Flow cytometry analyzes cell population to predict cancer immunotherapy response

Flow cytometry helped find that the amount of white blood cells in melanoma tumors can predict response to a cancer therapy.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World