FLUORESCENT PROBES/NEUROSCIENCE: Fluorescing live synapses shed light on learning, memory formation

A new type of imaging probe is enabling real-time visualization of excitatory and inhibitory synapses that change as new memories are formed.1 The probes attach fluorescent markers to synaptic proteins, and light up synapses in living neurons without affecting neuronal functioning. In photomicrographs, the synapses appear as bright spots along dendrites (the branches that transmit electrochemical signals). As the brain processes new information, the bright spots change, visually indicating how synaptic structures in the brain have been altered by the new data.

Green spots indicate excitatory synapses, while red dots indicate inhibitory synapses, in a living neuron in culture
Green spots indicate excitatory synapses, while red dots indicate inhibitory synapses, in a living neuron in culture. (Photo courtesy of Don Arnold)

"When you make a memory or learn something, there's a physical change in the brain," explains Don Arnold, associate professor of molecular and computational biology at the University of Southern California (USC; Los Angeles, CA), who co-led the work. "It turns out that the thing that gets changed is the distribution of synaptic connections."

To make these probes, the team used a technique known as "mRNA display," developed by Nobel laureate Jack Szostak along with chemistry and chemical engineering professor Richard Roberts. "Using mRNA display, we can search through more than a trillion different potential proteins simultaneously to find the one protein that binds the target the best," said Roberts, who led the team along with Arnold.

The probes, which the researchers call "FingRs," are attached to green fluorescent protein (GFP), which glows brightly when exposed to blue light. While they act like antibodies, they bind more tightly and are optimized to work inside the cell—something ordinary antibodies cannot do.

Because FingRs are proteins, the genes encoding them can be put into brain cells in living animals, causing the cells themselves to manufacture the probes (in fact, the probes can be put in the brains of living mice and imaged through cranial windows using two-photon microscopy). A regulation system cuts off the amount of FingR-GFP that is generated after 100% of the target protein is labeled, effectively eliminating background fluorescence and generating a sharper, clearer picture.

The researchers say that their work may offer crucial insight for scientists responding to President Barack Obama's Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) initiative, which aims to help mankind better understand how we think, learn, and remember.

1. G.G. Gross et al., Neuron, 78, 6, 971–985 (2013).

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS