DEEP TISSUE IMAGING/TERAHERTZ TECHNOLOGY: Powerful laser-based terahertz system promises unprecedented depth for tissue imaging

A laser-powered terahertz (THz) source and detector system transmits with 50 times more power, and receives with 30 times greater sensitivity, than existing technologies, according to its developers.1 The effect is 1,500 times greater power for deep tissue imaging and other applications—without the damaging effects of x-rays. With the technology, you could see deeper into tissues, said Mona Jarrahi, assistant professor of electrical engineering and computer science at the University of Michigan (U-M; Ann Arbor, MI), who led the work.

The researchers achieved the advance by coupling laser light with surface plasmon waves. This created a funnel able to carry the light to select nanoscale regions near device electrodes that feed an antenna—provided to transmit and receive the THz signal. The excited surface plasmon waves deliver photons to precise locations quickly and efficiently, said Jarrahi.

University of Michigan researchers responsible for developing a laser-enabled THz source and detector system that promises deeper tissue imaging: associate professor Mona Jarrahi; doctoral students Ning Wang and Christopher Berry; and postdoctoral researcher Mohammad Reza Hashemi, all of the electrical engineering and computer science department
University of Michigan researchers responsible for developing a laser-enabled THz source and detector system that promises deeper tissue imaging: associate professor Mona Jarrahi; doctoral students Ning Wang and Christopher Berry; and postdoctoral researcher Mohammad Reza Hashemi, all of the electrical engineering and computer science department. (Photo courtesy of M. Jarrahi)

Jarrahi feels confident that the sources' output power and the detectors' sensitivity can be further improved by designing optical funnels with even tighter focusing capabilities.

Ted Norris, director of the U-M Center for Photonic and Multiscale Nanomaterials, says the innovation "gets right to the central issue in photoconductive THz devices, which is collecting all the charge. Since every application benefits from increased sensitivity...I expect this approach to be implemented widely."

Not all THz systems are powered by lasers, but those that are have been the most successful commercially, because of the cost-effectiveness, compactness, and high-power of sources now available.

1. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Nat. Comm., 4, 1622 (2013).

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Merz acquires laser tattoo removal device maker ON Light Sciences

Merz North America has acquired ON Light Sciences, which develops technologies to enhance laser-based dermatology procedures.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Laser therapy extracts rare tumor that grew human hair, skin in boy's skull

About four years ago, a tumor comprised of human skin, hair, bone and cartilage was fast-growing inside a Ramsey, MN, 10-year-old youth's brain.

Low-level laser therapy could speed muscle recovery at Rio 2016 Olympics

The gold medal-winning women’s U.S. Gymnastics team is reportedly experimenting with infrared light therapy to alleviate pain and reduce swelling in its athletes. (Update: A spokesperson for ...
BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World