LIVE CELL IMAGING/MICROSCOPY: Low-intensity laser enables label-free approach to computed 3D live cell imaging

A pair of Swiss researchers has designed a device, based on holographic microscopy and computational image processing, that can create 3D images of living cells and track their reaction to stimuli without labeling.1 Their setup generates three-dimensional images with less than 100 nm resolution in just a few minutes; they are currently working to develop instantaneous operation. Because the approach requires no contrast dyes or fluorescent probes, foreign substances cannot impact experiment results. In addition, their use of a low-intensity laser minimizes the impact of light or heat on cells and enables observation over extended periods of time.

As the laser scans the specimen from various angles, a digital camera captures the images extracted by holography. The scans are then assembled by computer into a 3D image, and "deconvoluted" to eliminate noise. The assembled image can be virtually "sliced" to display cell components such as nucleus, genes and organelles.

The researchers think that being able to capture a living cell from every angle in this way opens the door to a whole new field of exploration. "We can observe in real time the reaction of a cell that is subjected to any kind of stimulus," explained Yann Cotte, who, with fellow researcher partner Fatih Toy, was lead author on a paper explaining the work.1 This approach would allow the study of pharmaceuticals at the scale of the individual cell, for example. Christian Depeursinge of the Microvision and Microdiagnostics Group at École Polytechnique Féderale de Lausanne (EPFL)'s School of Engineering supervised their work.

Toy and Cotte are launching a company, and in collaboration with Lyncée SA (also of Lausanne), they hope to develop portable systems able to generate in vivo scans. Their paper in Nature Photonics is accompanied by a time-lapse video, shot over the course of an hour, showing the development of a neuron and synapse. This work resulted from collaboration with the neuroenergetics and cellular dynamics laboratory in EPFL's Brain Mind Institute.

1. Y. Cotte et al., Nat. Photon., 7, 113–117 (2013); doi:10.1038/nphoton.2012.329.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Merz acquires laser tattoo removal device maker ON Light Sciences

Merz North America has acquired ON Light Sciences, which develops technologies to enhance laser-based dermatology procedures.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Laser therapy extracts rare tumor that grew human hair, skin in boy's skull

About four years ago, a tumor comprised of human skin, hair, bone and cartilage was fast-growing inside a Ramsey, MN, 10-year-old youth's brain.

Low-level laser therapy could speed muscle recovery at Rio 2016 Olympics

The gold medal-winning women’s U.S. Gymnastics team is reportedly experimenting with infrared light therapy to alleviate pain and reduce swelling in its athletes. (Update: A spokesperson for ...
BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS