NEUROLOGY/OPHTHALMOLOGY: Light-activatable engineered molecule promising for AMD, epilepsy treatment

Collaboration between chemists and vision scientists has resulted in the design of a light-sensitive molecule able to trigger response in cells of the retina and brain.1 The achievement is seen as a possible first step in overcoming degenerative eye diseases such as age-related macular degeneration (AMD; the leading cause of vision loss in people over 50), and to dampening epileptic seizures.

David Pepperberg is principal investigator on a study that bypasses rods and cones to make the retina's
David Pepperberg is principal investigator on a study that bypasses rods and cones to make the retina's "inner cells" responsive to light. The approach may also work as a treatment for epilepsy. (Image courtesy of UIC Photo Services)

AMD results when the retina's rods and cones—which normally absorb light and initiate visual signals—are lost. In such cases, the "inner cells" of the retina may still be operational. "Our approach is to bypass the lost rods and cones, by making the inner cells responsive to light," said David Pepperberg, professor of ophthalmology and visual sciences in the University of Illinois Chicago (UIC) College of Medicine.

Pepperberg, principal investigator on the study, is working with colleagues to develop light-sensitive molecules that—when injected into the eye—attach to inner retinal cells and initiate the signal that is sent to the brain. In collaboration with chemists led by Karol Bruzik in UIC's College of Pharmacy, they have developed a compound that dramatically regulates the GABA receptors of both an engineered receptor system and native receptors of retinal ganglion cells and brain neurons. When struck by light of different wavelengths, the molecule changes shape and functions as a light-triggered, on-off switch for these receptors.

Experiments done in collaboration with neurobiologist Thomas Otis at the University of California at Los Angeles demonstrated that the approach applies beyond visual systems. "Photo-regulation may also have potential as a therapeutic for epilepsy, a class of diseases that involves abnormal excitatory activity in the brain," said Pepperberg.

1. L. Yue, Nat. Comm., 3, 1095, doi:10.1038/ncomms2094.

POST A COMMENT

Related Articles

Photoacoustic imaging pioneer Lihong Wang

Photoacoustic imaging pioneer is 2015 Britton Chance Biomedical Optics Award winner

Photoacoustic imaging innovator Lihong Wang, whose research enables noninvasive examination of tissues inside the body at deep levels, has been awarded the 2015 Britton Chance Biomedical Optics Awa...

Light microscopy method speeds brain, spinal cord measurements

Researchers at the University of Miami (Florida), as a part of the Miami Project to Cure Paralysis, have turned to a light microscopy method to help answer questions that help define human spinal c...

Light microscopy trailblazers win Nobel Prize in Chemistry 2014

Three light microscopy pioneers—Eric Betzig, Stefan W. Hell, and William E. Moerner—have been awarded the Nobel Prize in Chemistry 2014 for two separate achievements in breaking the optical diffrac...

Laser neurosurgery tool receives Health Canada license as Class 4 medical device

Monteris Medical's NeuroBlate system, a minimally invasive robotic laser thermotherapy tool, has received Health Canada License as a Class 4 Medical Device.

BLOGS

Optogenetics among photonics techniques highlighted at Neuroscience 2014

Optogenetics among photonics techniques highlighted at Neuroscience 2014

Technology in general, and optogenetics in particular, is a focus here at Neuroscience 2015, wher...
BioOptics World editor-in-chief Barbara Goode

What is biophotonics?

At BioOptics World, our focus is photonics (including optics) for life sciences—that is, biophoto...

Nobel Prize honors super-resolution optical microscopy

"This year's prize is about how the optical microscope became a nanoscope," said Staffa...

Most Popular Articles


CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS