ADAPTIVE OPTICS/OPTICAL COHERENCE TOMOGRAPHY: Software-based approach sharpens interferometric imagery

A technique developed to computationally correct for aberrations is helping to produce higher-quality images and 3D datasets for real-time imaging applications such as image-guided surgery, cancer diagnosis, and ophthalmology. Called computational adaptive optics, it can be applied to any type of interferometric imaging, such as optical coherence tomography (OCT). And because the computations can be performed on an ordinary desktop computer, the approach is accessible for many hospitals and clinics.1

Aberrations in imaging can make points appear as slashes or blurs
Aberrations in imaging can make points appear as slashes or blurs. (Image courtesy of Steven Adie)

Adaptive optics typically involves the use of mirrors to smooth out scattered light before it enters a lens. The new approach uses computer software to find and correct aberrations after the image is taken. Once a tissue sample is scanned using an interferometric microscope (which uses two beams of light), the computer collects all of the data and then corrects the images at all depths within the volume. Researchers at the University of Illinois (U of I; Champaign, IL) led by Stephen Boppart, professor of electrical and computer engineering, bioengineering, and internal medicine, teamed up with Scott Carney, professor of electrical and computer engineering and the head of the Optical Science Group at the Beckman Institute, to develop the computational adaptive optics approach. Boppart's group previously developed various handheld devices for imaging the eye. "Because of the aberrations of the human eye, when you look at the retina without adaptive optics you just see variations of light and dark areas that represent the rods and cones. But when you use adaptive optics, you see the rods and cones as distinct objects," he explains. Adaptive optics hardware is too expensive or too complicated for most practicing ophthalmologists, the researchers say, but a computational solution could allow more ophthalmologists to examine and treat their patients effectively.

Because the approach corrects data post-acquisition, the researchers have been able to develop microscope systems that maximize light collection instead of worrying about minimizing aberrations-an effort that could produce better data for better image rendering. The researchers are now working to refine the algorithms and explore applications, including real-time in-vivo applications for surgery, minimally invasive biopsy, and others.

1. S. G. Adie et al., PNAS, 1121193109v1-7180 (2012).

More BioOptics World Current Issue Articles
More BioOptics World Archives Issue Articles

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Merz acquires laser tattoo removal device maker ON Light Sciences

Merz North America has acquired ON Light Sciences, which develops technologies to enhance laser-based dermatology procedures.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Laser therapy extracts rare tumor that grew human hair, skin in boy's skull

About four years ago, a tumor comprised of human skin, hair, bone and cartilage was fast-growing inside a Ramsey, MN, 10-year-old youth's brain.

Low-level laser therapy could speed muscle recovery at Rio 2016 Olympics

The gold medal-winning women’s U.S. Gymnastics team is reportedly experimenting with infrared light therapy to alleviate pain and reduce swelling in its athletes. (Update: A spokesperson for ...
BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World