CELL BIOLOGY/MICROSCOPY: Highly accurate microscopy method measures growth in all types of cells

An extremely sensitive imaging method that uses two light beams to quantitatively measure cell mass with femtogram accuracy has proven able to track the growth of a single cell and even intracellular mass transport. Developed at the University of Illinois (Champaign, IL), the approach—called spatial light interference microscopy (SLIM)—offers a key advantage over other methods: It can measure all types of cells, from bacteria and single cells to populations (including mammalian, adherent, and nonadherent cells)—all the while maintaining sensitivity and quantitative information derived, according to Mustafa Mir, a first author on a paper describing the work.1

Spatial light interference microscopy (SLIM) has enabled quantitative measurement of cell mass using a pair of light beams. (Image courtesy of the University of Illinois Quantitative Light Imaging Laboratory)

Because of SLIM’s sensitivity, the researchers were able to monitor growth through different phases. Doing so enabled them to discover that mammalian cells exhibit exponential growth only during the G2 phase of the cell cycle—that is, following DNA replication and before cell division—which has implications not only for basic biology, but also for diagnostics, drug development, and tissue engineering. The researchers hope to apply their new knowledge to different disease models: For example, they aim to learn how growth varies between healthy and cancerous cells, and the effects of treatments on growth rates.

SLIM combines holography and phase-contrast microscopy, and requires no staining or other special preparation. Based on white light, it can be combined with more traditional microscopy techniques, such as fluorescence. Mir explains that the method works as an add-on to a commercial microscope: “Biologists can use all their old tricks and just add our module on top,” he says.

1. M. Mir et al., PNAS 108, 32, 13124–13129 (2011).

More BioOptics World Current Issue Articles
More BioOptics World Archives Issue Articles

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.

Flow cytometry analyzes cell population to predict cancer immunotherapy response

Flow cytometry helped find that the amount of white blood cells in melanoma tumors can predict response to a cancer therapy.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World