NANOTECHNOLOGY/DISEASE DETECTION: Light-scattering nanoparticles enable fast, accurate flu diagnosis - at low cost

Fast or accurate? Those are typically your choices for flu diagnosis. But a new biophotonics approach offers both speed and accuracy, and low cost as well—all things that are supremely helpful during outbreaks, especially because antiviral drugs are most effective in the early stages of disease.

Gold nanoparticles—coated with antibodies that bind to specific strains of flu virus—form the foundation of the approach. By measuring how the particles scatter laser light, University of Georgia researchers have been able to detect influenza in minutes at less than a penny per exam. “We’ve known for a long time that you can use antibodies to capture viruses and that nanoparticles have different traits based on their size,” said Ralph Tripp, Georgia Research Alliance Eminent Scholar in Vaccine Development in the UGA College of Veterinary Medicine. “What we’ve done is combine the two.”

The nanoparticle-antibody complex aggregates with any virus present in a sample. This clustering causes the scattered light to fluctuate in a predictable and measurable pattern, and a commercially available device measures the intensity. “The test is something that can be done literally at the point-of-care,” said Jeremy Driskell, who co-authored the paper describing the work. “You take your sample, put it in the instrument, hit a button and get your results.”1

The approach competes with the current standard for definitively diagnosing flu, a test known as polymerase chain reaction (PCR), which requires specialized labs, trained personnel, multiple days, and numerous steps. Another alternative, lateral flow assay, is cost-effective and can be used at the point-of-care, but it’s error-prone and cannot identify specific viral strains.

Tripp and Driskell plan to compare the new test with another one Tripp and his colleagues developed, which measures the change in frequency of a laser as it scatters off viral DNA or RNA. Tripp also is working to adapt the new technique so that poultry producers can rapidly detect levels of salmonella in bath water during processing. “Theoretically, all we have to do is exchange our anti-influenza antibody out with an antibody for another pathogen that may be of interest, and we can do the same test for any number of infectious agents.”

1. J.D. Driskell et al., Analyst 136, 3083–3090 (2011).

More BioOptics World Current Issue Articles
More BioOptics World Archives Issue Articles

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

LuxCath optical tissue characterization catheter enables real-time monitoring during cardiac ablation

A study used optical tissue characterization technology for the first time in procedures to treat arrhythmia patients.

Microscope scans images 2000X faster for near-real-time videos of nanoscale processes

Engineers have designed an atomic force microscope (AFM) that scans images 2000 times faster than existing commercial models.

Fluorescence Imaging: Optical filtering basics for life sciences

Optical filters can have a dramatic effect on outcomes in life sciences. These principles demonstrate how next-generation thin film enhances excitation and emission in fluorescence bioimaging syste...

Translational Research: Bench-to-bedside: Progress, pioneers, and 21st Century Cures

The NIH/SPIE Biophotonics from Bench to Bedside workshop (Sept. 24-25) featured speakers and posters presenting exciting translational research in technologies and applications.

Legislation promises biophotonics opportunities

The 21st Century Cures Act (H.R. 6) was a focal point at the NIH/SPIE Biophotonics from Bench to Bedside workshop.

Biophotonics innovator Ozcan wins International Commission for Optics Prize

UCLA professor and biophotonics innovator Aydogan Ozcan has received the International Commission for Optics (ICO) Prize.

Hydrogel bandage with embedded LEDs can deliver medicine to the skin

A newly developed hydrogel matrix can incorporate LEDs, other components, and tiny reservoirs and channels for drug delivery.

Preclinical studies demonstrate effectiveness of laser technologies for local pain control

Two laser methods can trigger on-demand release of a local anesthetic to provide repeatable, long-lasting pain management.

Multifunctional endoscope could treat, remove cancer cells in minimally invasive manner

A newly developed multifunctional endoscope could enable more targeted treatment for cancer patients.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS