MICROSCOPY/LIVE CELL IMAGING/CELL BIOLOGY: First STED imaging of live cells in two colors

Stimulated emission depletion (STED) microscopy—a super-resolution approach that reveals cells and cellular components in detail by absorbing and releasing energy in fluorescent dye—has been limited to single-color imaging of living cells. But effective study of active cell processes, such as protein interactions, really requires multicolor imaging. Now, a team of researchers from Yale University has given a boost to cell biology by reaching this goal. The group describes its work in the August 2011 issue of Optics Express.1

Tubulin and lamin, immunostained with ATTO 647N and KK 114
Tubulin and lamin, immunostained with ATTO 647N and KK 114, respectively; a) Raw intensity STED data, and b) channels decomposed by lifetime separation (green: tubulin, red: lamin). (Images courtesy Optics Express)

The key to the researchers’ achievement was overcoming the challenges of labeling target proteins in living cells with dyes optimal for two-color STED microscopy. By incorporating fusion proteins, they improved the targeting between the protein and the dye, effectively bridging the gap. This enabled them to reach resolutions of 78 and 82 nm for 22 sequential two-color scans of two proteins—epidermal growth factor and epidermal growth factor receptor—in living cells.

The researchers expect that this and other novel approaches will expand live cell STED microscopy to three and more colors, eventually enabling imaging in three dimensions.

1. J. Bückers et al., Opt. Exp. 19, 3130–3143 (2011).

More BioOptics World Current Issue Articles
More BioOptics World Archives Issue Articles

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World