Stochastic optical reconstruction microscopy (STORM) enables generation of 2D and 3D multicolor imaging of tissues and cells with near molecular-scale resolution.

In the past few years, several breakthrough technologies have been introduced that break the traditional limits of optical microscopy. Of them, multicolor, three-dimensional stochastic optical reconstruction microscopy (STORM) is one of the most promising for observing tissues and cells with near molecular-scale resolution—and the technology is about to become available commercially (see Fig. 1).

Click to Enlarge

Figure 1. In STORM imaging, photo-switchable reporter dyes can be cycled between a fluorescent and a dark state in reversible manner by exposure to light of different wavelengths.

STORM, developed in the lab of Xiaowei Zhuang—Howard Hughes Medical Institute Investigator, Professor of Chemistry and Chemical Biology, and Professor of Physics at Harvard University (Boston, MA), uses photo-switchable fluorescent probes to temporally separate the otherwise spatially overlapping images of individual molecules, allowing the construction of super-resolution imagery. Using this concept, two- and three-dimensional, multicolor fluorescence images of molecular complexes, cells and tissues with a few 10s of nanometers resolution has been achieved. This approach allows nanometer-scale imaging of molecular interactions in cells and cell-cell interactions in tissues. (See the sidebar, Approaches to super-resolution.)

What it means and how it works

Until the late 1980s, most life scientists investigated the intricate details of biological structures by capturing single snapshots of cytological features using fixed and stained specimens. More recently, the technique of imaging cells on the microscope stage evolved with the emergence of immuno-conjugated synthetic fluorophores and fluorescent proteins to serve as qualitative and quantitative reporters of intracellular structure and dynamics. Cellular imaging now spans multiple modalities, including widefield (fluorescence, phase contrast and differential interference contrast), laser scanning confocal, multiphoton, and spinning disk microscopy.

Click to EnlargeClick to Enlarge

Figure 2. Conventional fluorescence (left) and STORM images (center, right) show the same region of microtubules in a mammalian cell. (Images adapted from Science 319, 810-813 [2008].)

STORM reveals molecules' positions in all three dimensions—with lateral resolution to approximately 20 nm and axial resolution to approximately 50 nm—thus enabling scientists to gain new insights into the dynamic associations of co-localized proteins in cells at a scale an order of magnitude smaller than before.

STORM achieves its high image resolution by relying on the detection and localization of single fluorescent molecules (see Fig. 2). Due to the diffraction of light, the image of a single fluorescent molecule has a finite size of approximately 200–300 nm in a lateral direction and 500–800 nm along the axial direction. Nonetheless, the position of the molecule can be determined to a much higher precision by fitting the image to find its centroid position. The positioning precision depends on the number of photons (N) detected from the molecule. That is:

Precision = the width of the image / √N

For example, the position of a single dye molecule can be determined to accuracy as high as ~1 nm (see Fig. 3). This high-precision localization, however, does not directly give sub-diffraction image resolution, as the images of nearby molecules would be highly overlapping, making their positions difficult to determine. But STORM provides a solution.

STORM is based on the sequential imaging and localization of these molecules, which can be optically switched between a fluorescent state and a dark state. When the fluorescence emission from these molecules is controlled over time, researchers can map their positions. Specifically, in the imaging process, only a subset of molecules is activated to the fluorescent state at any given time (for example, by exposure to light of a certain wavelength and intensity), such that the images of individual activated molecules do not typically overlap. By fitting these isolated images, the positions of the activated molecules can be localized with high precision, as described above. This process is then repeated to allow more molecules to be localized. Once all the molecules, or a sufficiently large number of molecules, have been localized, a high-resolution image can be constructed from the measured positions of these molecules. Thus, the resolution of a STORM image is limited not by diffraction, but by the localization precision of the molecules.

A major advantage of fluorescence microscopy is the capacity for multicolor imaging, which enables visualization of the relative organization and interactions between different biological molecules. In multicolor STORM imaging, a family of photo-switchable "reporter" dyes, including Cy5, Cy5.5 and Cy7, can be cycled between a fluorescent and a dark state in reversible manner by exposure to light of different wavelengths. Red light can excite fluorescence and also cause the dyes to switch off. The reporter dyes can be efficiently reactivated when an "activator" dye is placed in close proximity if the wavelength of activation light matches the absorption peak of the activator. Not only can different pairs be distinguished by their emission color, as determined by the reporter dye, but they can also be differentiated by the color of light that activates them, as determined by the activator dye. Combinatorial pairing of reporters and activators allows the construction of a large number of spectrally distinguishable fluorescent probes and enables STORM imaging of cells with many colors.

Click to Enlarge

Figure 3. The z-position of microtubules in a cell is color-coded according to the colored scale bar. (Images adapted from Science 319, 810-813 [2008].)

In December 2009, Harvard University signed a licensing agreement granting Nikon Corporation the rights to use the STORM technology. Under the agreement, Nikon has begun to manufacture and market N-STORM instrumentation, and plans to begin delivering systems in September 2010.

The potential of STORM technology will be shaped by those who are using it. These not only include biologists who adopt the STORM technology to study their specific biological systems, but also physicists and chemists who develop other ways of manipulating the imaging system to achieve novel imaging capabilities.

Importantly, the resolutions mentioned above do not represent the ultimate limit of STORM. Its spatial resolution is determined by the precision and density of localizations in the image. These two quantities are determined by four practical factors: the brightness of the probe, residual dark-state fluorescence, labeling efficiency and label size. Given sufficient probe brightness and labeling density, resolution can be almost arbitrarily high. For a bright probe, such as Alexa Fluor 647, the number of photons detected allows in principle a localization precision of a few nanometers, promising true molecular-scale resolution.

What researchers see next depends upon how scientists are able to adapt the STORM technology to their research and laboratories.


  1. Science Vol. 313. no. 5793, pp. 1642 – 1645 (2006)
  2. Nature 462, 675-678 (2009)

STEPHEN T. ROSS is Senior Manager, Bioscience Product and Technology, Nikon Instruments, Melville, NY, www.nikoninstruments.com; e-mail: sross@nikon.net.

Approaches to super-resolution


More Brand Name Current Issue Articles
More Brand Name Archives Issue Articles

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World