Blood becomes a laser emitter for drug testing, cancer treatment

lasing-banner_web

Researchers at the University of Michigan (Ann Arbor, MI) have developed a new technique that combines laser light with an FDA-approved green fluorescent dye to monitor cell structure and activity at the molecular level. The work could someday improve clinical imaging and better monitor tumors and other cell structures, as well as be used during drug testing to monitor the changes that cells undergo when exposed to prospective new drugs.

Related: Liquid laser improves detectability of diseased DNA

The team—led by Xudong (Sherman) Fan, associate professor in Biomedical Engineering at the University of Michigan—shined laser light into a small laser cavity containing whole human blood infused with indocyanine green fluorescent dye. By analyzing the light that was reflected, the researchers could observe cell structures and changes within the blood on the molecular level.

Because the technique has the ability to process laser light, it can be amplified to make small changes easier to see or filtered to remove unwanted background noise. Current methods use similar dyes with infrared or visible light, relying on visible fluorescence to observe cell activity and making small changes can be difficult to see.

Currently, the researchers have only demonstrated the technique on whole blood outside the body. But they predict that in the future, they may be able to use it on tissue inside the body. This could enable better monitoring of cell activity and tissue properties inside the body, or enable a surgeon to precisely identify the edge of a tumor during guided surgery.

Full details of the work appear in the journal Optica; for more information, please visit http://dx.doi.org/10.1364/optica.3.000809.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Photoacoustic flow cytometry could allow early thrombosis detection

Researchers conducted a series of experiments on mice to detect thrombosis using photoacoustic flow cytometry.

Johnson & Johnson to acquire ophthalmic device maker Abbott Medical Optics for $4.33B

The acquisition will include Abbott's ophthalmic products in cataract surgery, laser refractive surgery, and consumer eye health.

Noninvasive transcranial NIR light therapy has potential to treat PTSD

Findings on the effects of transcranial NIR light therapy could result in an noninvasive treatment for brain disorders like PTSD.

Third FDA-approved study supports additional potential use of laser ablation technology

The FDA has approved an additional Investigational Device Exemption (IDE) to evaluate the NeuroBlate laser ablation system.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS