In vivo imaging method visualizes bone-resorbing cell function in real time

Researchers at at the Immunology Frontier Research Center (IFReC) at Osaka University (Japan) have discovered a way to visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone in vivo. This real-time visualization of changes in osteoclast localization and activity allowed measurement of bone resorption intensity, and the work could someday contribute to early diagnosis of affected areas and the development of new therapeutic drugs.

Osteoclasts are bone-resorbing cells that may cause osteoporosis and rheumatoid arthritis if there is an excess in bone resorption. So far, information on osteoclast localization could be gathered by using fluorescent proteins, but this method did not allow an examination of osteoclast activity. So the researchers, led by Kazuya Kikuchi, professor at the Graduate School of Engineering, and Masaru Ishii, professor at the Graduate School of Medicine, produced fluorescent probes that visualize those sites where osteoclasts are in the process of resorbing bone and developed their own imaging device. They thereby conducted an in vivo evaluation of osteoclast function.

In vivo imaging method visualizes bone-resorbing cell function in real time
In vivo excitation spectra of pHocas-3 and tdTomato.

The research team developed a mechanism by which small molecular probes (SMPs) are selectively delivered to the location of target cells. Up until then, application of SMPs to in vivo imaging was particularly challenging, as delivery to target tissues proved difficult. The researchers managed to optimize molecular delivery so that the molecular probes only had to be injected into the mice for imaging. The SMPs were equipped with a switch function that is only triggered at those areas where bone is being resorbed. This enabled the selective visualization of osteoclast activity. In combination with fluorescent proteins that label target cells, the researchers succeeded in real-time visualization of changes in cell localization and activity as well as the measurement of bone resorption intensity.

In vivo imaging method visualizes bone-resorbing cell function in real time
Photostable pH-activatable probe.

This research will have great impact in the field of in vivo imaging, as it established a method that allows simple and quick measurement in detecting osteoclasts that are in the process of resorbing bone. This could also benefit early diagnosis and the screening of new therapeutic drugs. The findings also could be applied to molecular design based on physical chemistry principles, creation of functional fluorescent probes by synthetic organic chemistry, and clarification of intravital mechanisms using immunological knowledge and technology.

Full details of the work appear in the journal Nature Chemical Biology; for more information, please visit http://dx.doi.org/10.1038/nchembio.2096.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Avinger signs agreement with HealthTrust for OCT image-guided atherectomy system

HealthTrust will acquire Avinger's Pantheris OCT image-guided atherectomy system that recently received FDA approval.

Method builds on super-resolution microscopy to image collagen fibrils in-network

Super-resolution images of structures in biological material under natural conditions at a much higher resolution is possible.

Confocal microscopy method best identifies melanoma on head, neck

A team of researchers identified lesions for which reflectance confocal microscopy (RCM) performs better in terms of diagnostic accuracy.

Blood becomes a laser emitter for drug testing, cancer treatment

Combining laser light with an FDA-approved green fluorescent dye can monitor cell structure and activity at the molecular level.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS