Optofluidic laser in development for better disease detection wins $500,000 NSF grant

An optofluidic laser in development at the University of Texas at Arlington (UTA) promises better disease detection—including cancer—in a clinician's office, and has been awarded a National Science Foundation (NSF; Arlington, VA) five-year, $500,000 Faculty Early Career Development or CAREER Program grant. Award recipient Yuze "Alice" Sun, a UTA assistant professor of electrical engineering, is developing the laser, which also could have utility as a versatile biosensing platform with exceptional detection sensitivity, selectivity, and throughput.

Related: Optofluidics and the next generation of health-care engineering

Most lasers are semiconductor-based and require solid material to create cavities to confine light. In optofluidic lasers, two-phase liquids are controlled using microfluidics and nanofluidics to form a highly efficient optical microcavity. The all-liquid nature makes the laser adaptive and achieves high-precision tuning in an unprecedented manner. "Optofluidic lasers are unique because the microlaser can be achieved through 'smart' self-assembly at the liquid-liquid interface," Sun says. "Because of this unique structure, the optofluidic laser is biocompatible and bioconfigurable. It could eventually be applied to in vivo biosensing, although this is beyond the scope of the current project."

Yuze "Alice" Sun, a UTA assistant professor of electrical engineering, received an NSF Early CAREER Award grant. (Credit: UT Arlington)

Sun says that she initially will explore using the optofluidic laser to detect biomarkers for cancer diagnosis and possibly other genetic disorders at the molecular and cellular level. Her development could someday lead to the creation of a point-of-care platform for clinicians to use in an office rather than having to send samples away for analysis, she explains.

Including her CAREER Award, Sun has been the primary investigator on research grants totaling more than $900,000 since beginning her career in 2013. She has been involved with several other projects totaling nearly $1 million as a co-principal investigator in that time. Her research interests include optofluidic biomedical and chemical sensing; nanophotonics and biophotonics; microfluidics and point-of-care devices; and bio-inspired photonic devices and systems.

The Faculty Early Career Development Program is the NSF's most prestigious award for junior faculty. Winners are outstanding researchers, but also are expected to be outstanding teachers through outstanding research, excellent education, and the integration of education and research at their home institutions. The goal of the program is to identify faculty who have potential to become leaders in their fields and give them a significant grant to begin to realize that potential.

For more information, please visit www.nsf.gov.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Merz acquires laser tattoo removal device maker ON Light Sciences

Merz North America has acquired ON Light Sciences, which develops technologies to enhance laser-based dermatology procedures.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Laser therapy extracts rare tumor that grew human hair, skin in boy's skull

About four years ago, a tumor comprised of human skin, hair, bone and cartilage was fast-growing inside a Ramsey, MN, 10-year-old youth's brain.

Low-level laser therapy could speed muscle recovery at Rio 2016 Olympics

The gold medal-winning women’s U.S. Gymnastics team is reportedly experimenting with infrared light therapy to alleviate pain and reduce swelling in its athletes. (Update: A spokesperson for ...
BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World