New brightness-equalized quantum dots allow for improved bioimaging

A new class of light-emitting quantum dots (QDs) with tunable and equalized fluorescence brightness across a broad range of colors results in more accurate measurements of molecules in diseased tissue and improved quantitative imaging capabilities, thanks to work by researchers at the University of Illinois at Urbana-Champaign.

Related: Silicon quantum dots promising for clinical deep-tissue imaging

Andrew M. Smith, an assistant professor of bioengineering who led the work, explains that light emission had an unknown correspondence with molecule number previously. But now, it can be precisely tuned and calibrated to accurately count specific molecules, which will be particularly useful for understanding complex processes in neurons and cancer cells to help unravel disease mechanisms, and for characterizing cells from diseased tissue of patients, he says.

New brightness-equalized quantum dots that have equal fluorescence brightness for different colors
Conventional fluorescent materials like quantum dots and dyes have mismatched brightness between different colors (left). When these materials are administered to a tumor (shown below) to measure molecular concentrations, the signals are dominated by the brighter fluorophores. New brightness-equalized quantum dots that have equal fluorescence brightness for different colors (right). When these are administered to tumors, the signals are evenly matched, allowing measurement of many molecules at the same time.

Sung Jun Lim, a postdoctoral fellow and first author of the paper describing the work, says that it has always been challenging to extract quantitative information because the amount of light emitted from a single dye is unstable and often unpredictable. Also, brightness varies drastically between different colors, which complicates the use of multiple dye colors at the same time. These attributes obscure correlations between measured light intensity and concentrations of molecules, he adds.

The new materials will be especially important for imaging in complex tissues and living organisms where there is a major need for quantitative imaging tools, and can provide a consistent and tunable number of photons per tagged biomolecule, the researchers say. They are also expected to be used for precise color matching in light-emitting devices and displays, and for photon-on-demand encryption applications. The same principles should be applicable across a wide range of semiconducting materials.

Full details of the work appear in the journal Nature Communications; for more information, please visit http://dx.doi.org/10.1038/ncomms9210.

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Blood becomes a laser emitter for drug testing, cancer treatment

Combining laser light with an FDA-approved green fluorescent dye can monitor cell structure and activity at the molecular level.

Microscopy system harnesses virtual reality technology for image-guided neurosurgery

A microscope image injection system overlays virtual reality imaging onto the brain when viewed through the eyepiece during surgery.

OCT imaging improves percutaneous coronary intervention, study finds

OCT can visualize coronary arteries in patients undergoing percutaneous coronary intervention, leading to improved outcomes.

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....
BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS