Multimodal fluorescence imaging method peers into nanoscale pores for use in drug development

A team of researchers at Rice University (Houston, TX), along with collaborators at the University of California, Los Angeles (UCLA) and Kansas State University (Manhattan, KS), has developed a multimodal fluorescence imaging method that can peer into and measure the space in porous materials, even if that space is too small or fragile for traditional microscopes.

Related: Imaging system combines five molecular imaging techniques

The Rice University team, led by chemist Christy Landes, invented a technique to characterize such nanoscale spaces, an important advance toward her group’s ongoing project to efficiently separate “proteins of interest” for drug development. It should also benefit the analysis of porous materials of all kinds, like liquid crystals, hydrogels, polymers, and even biological substances like cytosol, the compartmentalized fluids in cells.

Standard techniques like atomic force, x-ray, and electron microscopy would require samples to be either frozen or dried. “That would either shrink or swell or change their structures,” Landes says.

So, Landes and her team combined their experience with super-resolution microscopy and fluorescence correlation spectroscopy techniques. Super-resolution microscopy is a way to see objects at resolutions below the diffraction limit, which restricts the viewing of things that are smaller than the wavelength of light directed at them. Correlation spectroscopy is a way to measure fluorescent particles as they fluctuate. By crunching data collected via a combination of super-resolution microscopy and correlation spectroscopy, the researchers mapped slices of the material to see where charged particles tended to cluster.

The paths fluorescent particles take as they diffuse through a porous nanoscale structure reveal the arrangement of the pores through a multimodal fluorescence imaging technique developed by scientists at Rice University
The paths fluorescent particles take as they diffuse through a porous nanoscale structure reveal the arrangement of the pores through a multimodal fluorescence imaging technique developed by scientists at Rice University. (Credit: Landes Research Group/Rice University)

The combined method, which they call fluorescence correlation spectroscopy super-resolution optical fluctuation imaging (fcsSOFI), measures fluorescent tags as they diffuse in the pores, which allows researchers to simultaneously characterize dimensions and dynamics within the pores. The lab tested its technique on both soft agarose hydrogels and lyotropic liquid crystals. Next, they plan to extend their mapping to three-dimensional spaces.

“We now have both pieces of our puzzle: We can see our proteins interacting with charges within our porous material, and we can measure the pores,” Landes says. “This has direct relevance to the protein separation problem for the $100 billion pharmaceutical industry.”

Full details of the work appear in the journal ACS Nano; for more information, please visit http://dx.doi.org/10.1021/acsnano.5b03430.

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Microscope detects one million-plus biomarkers for sepsis in 30 minutes

A microscope has the potential to simultaneously detect more than one million biomarkers for sepsis at the point of care.

Eye test that pairs two in vivo imaging methods may detect Parkinson's earlier

A low-cost, noninvasive eye test pairs two in vivo imaging methods to help detect Parkinson's before clinical symptoms appear.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS