Optical coherence tomography may help reduce stroke damage

Researchers at the University of Washington (Seattle, WA) used optical coherence tomography (OCT) to render high-resolution images and information about blood-flow dynamics over a broad region of the brain before, during, and after stroke-like states. The work could someday guide new treatments and reduce stroke-induced damage to the brain.

Related: OCT could enable physicians to tailor stroke prevention efforts

In the study, Ruikang Wang, Ph.D., professor of bioengineering and ophthalmology, and co-authors Utku Baran and Yuandong Li used OCT-based optical microangiography to reveal brain-vessel dynamics in tremendous detail during real-time experimental stroke.

Not only were the researchers able to achieve high-resolution images of in vivo vascular networks across a large area, but they also were able to evaluate the vessel diameters, red-blood-cell velocity, and total blood-flow change across the area. In doing so, Wang says, they demonstrated a biologically initiated rescue mechanism in response to stroke. The new information could potentially provide guidance to clinicians treating stroke patients.

A comparison between regions where teriolo-arteriolar anastomosis (AAA) is relatively stronger or weaker. (Credit: Utku Baran, Yuandong Li, Ruikang Wang; http://dx.doi.org/10.1117/1.nph.2.2.025006)

"Our key finding uncovers a non-uniform regulation event in penetrating arterioles—variance in the dilation among important vessels circulating blood throughout the brain," Wang says. "Specifically, active dilation of penetrating arterioles during stroke requires strong connections—anastomosis presence—and dilation and therefore blood flow fail in the areas farther away from an anastomosis. Abundance of anastomoses may prevent or delay permanent neural damage by supplying blood to penetrating arterioles and recovering rescuable tissue called penumbra."

With the enhanced imaging capability, Wang and his colleagues may discover as-yet-unknown mechanisms by which the brain regulates blood flow to brain tissue, says David Boas, editor-in-chief of the journal Neurophotonics, in which the study is published.

To read the study in Neurophotonics, please visit http://dx.doi.org/10.1117/1.nph.2.2.025006.

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Eye test that pairs two in vivo imaging methods may detect Parkinson's earlier

A low-cost, noninvasive eye test pairs two in vivo imaging methods to help detect Parkinson's before clinical symptoms appear.

Lightweight handheld probe for OCT provides insight into children's retinas

A handheld device is capable of capturing OCT images of a retina with cellular resolution in infants and toddlers.

Optical brain imaging noninvasively measures small perfusion changes caused by visual stimulation

An optical brain imaging system can track very small, focal changes in cortical perfusion resulting from visual stimulation.

Optical Coherence Tomography: Beyond better clinical care: OCT's economic impact

The optical coherence tomography (OCT) industry has grown dramatically in its first 25 years.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World