Laser bioimaging technique defines pituitary tumors with extreme precision

Researchers at Brigham and Women’s Hospital (BWH; Boston, MA) used a laser bioimaging technique that could help surgeons more precisely define the locations of pituitary tumors in near-real time.

The work involved a visualization technique called matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) that can analyze specific hormones, including growth hormone and prolactin, in tissue. In a study, the researchers found that it is possible to use MALDI MSI to determine the composition of such hormones in a pituitary sample in less than 30 minutes. This could give surgeons critical information to help distinguish tumor from normal gland.

The vast majority of pituitary tumors are noncancerous, but can cause headaches and profound fatigue, and can also disrupt hormone function. Currently, surgeons rely on radiologic images and magnetic resonance imaging (MRI) to gather information about the size and shape of the tumor, but the resolution of such imaging technologies is limited, and additional surgeries to remove more of the tumor may be needed if a patient’s symptoms persist.

To test the MALDI MSI technique, the research team analyzed hormone levels in 45 pituitary tumors and six normal pituitary gland samples, finding a distinct protein signature unique to the normal or tumor sample.

Mass spectrometry, a technique for measuring chemicals present in a sample, is currently used in the operating room to help inform clinical decisions, but up until now, the focus has been on small molecules (metabolites, fatty acids, and lipids) using a different type of approach. By analyzing proteins, MALDI MSI offers a way to visualize hormone levels.

Current methods used to detect hormone levels take too long to fit the time constraints of surgical intervention. Surgeons must either remove a larger amount of potentially healthy pituitary gland or perform follow up surgery if the tumor has not been fully removed.

“We’re hoping that techniques like this one will help move the field toward more precise surgery: surgery that not only removes all of the tumor, but also preserves the healthy tissue as much as possible,” says corresponding author Nathalie Agar, Ph.D., director of the Surgical Molecular Imaging Laboratory in the Department of Neurosurgery at BWH.

In the next phase of their work, Agar and her colleagues plan to test out the technique in BWH’s Advanced Multimodality Image Guided Operating Suite (AMIGO) and analyze the impact of the technique on clinical decision-making.

Full details of the work appear in the Proceedings of the National Academy of Sciences; for more information, please visit http://dx.doi.org/10.1073/pnas.1423101112.

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Microscope detects one million-plus biomarkers for sepsis in 30 minutes

A microscope has the potential to simultaneously detect more than one million biomarkers for sepsis at the point of care.

Eye test that pairs two in vivo imaging methods may detect Parkinson's earlier

A low-cost, noninvasive eye test pairs two in vivo imaging methods to help detect Parkinson's before clinical symptoms appear.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS