Shoebox-sized, inexpensive, and automated flow cytometer counts cancer cells in blood

Recognizing that large flow cytometers are expensive and can only be operated by trained personnel, researchers at the Fraunhofer Institute for Chemical Technology (ICT-IMM; Mainz, Germany) have developed a version that is cheap to produce, no bigger than a shoebox, and automated for counting cancer cells.

Related: Instrumentation advances add flexibility and quantitation to flow cytometry

The PoCyton flow cytometer takes a sample of the patient's blood and, within a short time, the attending physician will know how many tumor cells are circulating in the blood. Cancerous growths release cells into the bloodstream and their number provides an indication of how effective the therapy has been. If the number of cancerous cells decreases in the course of treatment, it shows that it has been effective.

Existing flow cytometers are capable of measuring the quantity of tumor cells circulating in the bloodstream, but they often cost up to $334,000 (€300,000) and take up an amount of space equivalent to two washing machines—plus the test cycle lasts several hours. In contrast, the PoCyton device enables such tests to be carried out around 20 times faster, according to Dr. Michael Baßler, research scientist at ICT-IMM. Additional advantages include the use of miniaturized components to reduce its size to that of a shoebox and automated measurements without the need for calibration.

The measuring channel that forms the key component of the PoCyton flow cytometer is visible on the right-hand side of the image
The measuring channel that forms the key component of the PoCyton flow cytometer is visible on the right-hand side of the image. (Image courtesy of Fraunhofer ICT-IMM)

In flow cytometry, a fluorescent dye is injected into the blood and the dye molecules bind to the tumor cells, leaving all other cells unmarked. Until now, the physician had to add the dye to the blood sample manually, which now takes place automatically in the PoCyton process. The blood is funneled through a narrow focal area, causing all suspended cells to pass one by one in front of a laser spot detector. The light causes the cancer cells to which the dye has attached itself to fluoresce, enabling the device to detect and count them. This narrow passage is the key to the PoCyton process. At the same time, its geometry was chosen to ensure that no cells pass in front of one another. In this way, the scientists can be sure that the system registers every single object flowing past the detector—and that no cell is hidden behind another. Such errors could have dramatic consequences because a 10 mL sample of blood contains around one billion suspended objects. Of these, only five are circulating tumor cells—even in a severely sick patient. The researchers have mastered the individual steps such as adequate sensitivity, automatic sample preparation, and analysis, and are now combining them to create a fully functional prototype by the summer of 2015.

Additional applications for the PoCyton could be detection of legionella bacteria in drinking water, which can cause the sometimes-deadly lung infection known as Legionnaire's disease.

For more information, please visit

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Microscope detects one million-plus biomarkers for sepsis in 30 minutes

A microscope has the potential to simultaneously detect more than one million biomarkers for sepsis at the point of care.

Photoacoustic imaging quantifies elasticity

Biomedical engineers in the US have developed a form of photoacoustic imaging that can quantify the elasticity of human tissue.

Flow cytometry analyzes cell population to predict cancer immunotherapy response

Flow cytometry helped find that the amount of white blood cells in melanoma tumors can predict response to a cancer therapy.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World