Computational approach enables 'stainless' staining for optical imaging

Researchers at the University of Illinois at Urbana-Champaign have developed a new approach to histology based on using infrared (IR) microspectroscopy. Instead of using stains, the spectra measure the chemical constitution of cells and tissues directly.

Related: Computational microscopy approach can 'paint' tissue samples with light

By using computational techniques, the researchers—led by Rohit Bhargava, a professor in the university's Bioimaging Science and Technology Group—were able to relate spectral properties to known staining patterns of tissue. The outcome is that that molecular stains can be reproduced without staining the tissue, but by using the intrinsic molecular contrast of the tissue and computation. That means any sample can be stained for desired stains without material cost, time, or effort while leaving precious tissue pristine for downstream analyses.

Two regions are selected to show an overlayer of molecular staining (left, cytokeratin; right, Masson's trichrome). All three stains are computationally generated using chemical imaging data obtained via IR spectroscopic imaging and without actually staining the tissue. (Image credit: Rohit Bhargava, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign)

Another use of the approach can be in the analysis of small amounts of samples—for example, from a thin needle biopsy. In cases where materials are limited or there may be a need to closely correlate multiple expressed molecules, it may not be possible to obtain multiple samples from the same biopsy for multiple stains. The method developed in this study could be a solution, allowing the user to simply "dial-in" a required stain. The study is timely, as it builds on the emergence of chemical imaging and maturation of computation from the sciences/engineering side and the drive to greater molecular content from the biomedical/clinical side. The development of this approach promises to have immediate and long-term impact in changing pathology to a multiplexed molecular science—in both research and clinical practice.

Full details of the work appear in the journal Technology; for more information, please visit


Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Microscope detects one million-plus biomarkers for sepsis in 30 minutes

A microscope has the potential to simultaneously detect more than one million biomarkers for sepsis at the point of care.

Photoacoustic imaging quantifies elasticity

Biomedical engineers in the US have developed a form of photoacoustic imaging that can quantify the elasticity of human tissue.

Flow cytometry analyzes cell population to predict cancer immunotherapy response

Flow cytometry helped find that the amount of white blood cells in melanoma tumors can predict response to a cancer therapy.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World