Super-resolution microscopy unravels inner structure of herpes simplex virus

Researchers at the University of Cambridge in England have developed a technique that allows a super-resolution microscopy method called direct stochastic optical reconstruction microscopy (dSTORM) to be used as a structural tool for the study of viruses.

Related: Optical fiber-based sensor IDs smallest virus particles

The work has enabled the research team, led by Prof. Clemens Kaminski and Dr. Colin Crump, to construct an ultra-high-resolution image of herpes simplex virus type 1 (HSV-1) and to determine the position of individual protein layers within the virion with nanometer precision. They also determined the distance between the capsid protein shell and the center of the HSV-1 virion. Additionally, multicolor dSTORM allowed the team to observe multiple layers simultaneously in individual virus particles.

dSTORM imaging of HSV-1 virus. Bottom right: Conventional wide-field fluorescence. Middle: dSTORM fluorescence image showing individual viruses of ~200 nm diameter, impossible to resolve in the conventional image. Top-right inset: Virus image obtained after particle averaging.

"Pinpointing with nanometric precision the position of individual proteins within the HSV-1 structure is crucial in providing the research community with potential therapeutic targets," says Dr. Romain Laine of the Department of Chemical Engineering and Biotechnology's Laser Analytics Group at the University of Cambridge. "Understanding the structure gives us a chance to better understand the functions of the different proteins present in the virus, even to suggest new functionality, and to consider previously unforeseeable protein-protein interactions."

Full details of the work appear in the journal Nature Communications; for more information, please visit


Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Microscope detects one million-plus biomarkers for sepsis in 30 minutes

A microscope has the potential to simultaneously detect more than one million biomarkers for sepsis at the point of care.

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

Adaptive optics enhances super-resolution microscopy for cell imaging

A new ultra-high resolution nanoscope can take 3D images of an entire cell and its cellular constituents in unprecedented detail.

Fluorescence microscopy approach captures three views of a sample simultaneously

A new fluorescence microscopy approach improves image resolution by acquiring three views of a sample at the same time.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS