Low-cost optical sensor can detect, analyze gases

Engineers at Oregon State University (OSU; Corvallis, OR) have combined innovative optical technology with nanocomposite thin films to create an optical sensor that is inexpensive, fast, highly sensitive, and able to detect and analyze a wide range of gases.

Related: Crowd-sourced measurements offer a unique view of pollution's effects

The technology might find applications in everything from environmental monitoring to airport security or testing blood alcohol levels. The sensor is particularly suited to detecting carbon dioxide (CO2), and may be useful in industrial applications or systems designed to store CO2 underground as one approach to greenhouse gas reduction.

"Optical sensing is very effective in sensing and identifying trace-level gases, but often uses large laboratory devices that are terribly expensive and can't be transported into the field," says Alan Wang, an assistant professor in the OSU School of Electrical Engineering and Computer Science. "By contrast, we use optical approaches that can be small, portable, and inexpensive," he says. "This system used plasmonic nanocrystals that act somewhat like a tiny lens, to concentrate a light wave and increase sensitivity."

This approach is combined with a metal-organic framework of thin films, which can rapidly adsorb gases within material pores, and be recycled by simple vacuum processes. After the thin film captures the gas molecules near the surface, the plasmonic materials act at a near-infrared range, help magnify the signal, and precisely analyze the presence and amounts of different gases.

"By working at the near-infrared range and using these plasmonic nanocrystals, there's an order of magnitude increase in sensitivity," says Chih-hung Chang, an OSU professor of chemical engineering. "This type of sensor should be able to quickly tell exactly what gases are present and in what amount."

That speed, precision, portability, and low cost, the researchers say, should allow instruments that can be used in the field for many purposes. The food industry uses CO2 in storage of fruits and vegetables, and the gas has to be kept at certain levels.

Gas detection can be valuable in finding explosives, and new technologies such as this might find application in airport or border security. Various gases need to be monitored in environmental research, and there may be other uses in health care, optimal function of automobile engines, and prevention of natural gas leakage.

OSU has filed for a patent on the invention, developed in collaboration with scientists at the National Energy Technology Lab or the U.S. Department of Energy, and with support from that agency. They are now seeking industrial collaborators to further develop and help commercialize the system.

Full details of the work appear in the Journal of Materials Chemistry C; for more information, please visit http://dx.doi.org/10.1039/C4TC02846E.

-----

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Merz acquires laser tattoo removal device maker ON Light Sciences

Merz North America has acquired ON Light Sciences, which develops technologies to enhance laser-based dermatology procedures.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Laser therapy extracts rare tumor that grew human hair, skin in boy's skull

About four years ago, a tumor comprised of human skin, hair, bone and cartilage was fast-growing inside a Ramsey, MN, 10-year-old youth's brain.

Low-level laser therapy could speed muscle recovery at Rio 2016 Olympics

The gold medal-winning women’s U.S. Gymnastics team is reportedly experimenting with infrared light therapy to alleviate pain and reduce swelling in its athletes. (Update: A spokesperson for ...
BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS