Fluorescence microscopy shows when and where proteins are made (video)

Scientists at Albert Einstein College of Medicine of Yeshiva University (Bronx, NY) and international colleagues have developed a novel fluorescence microscopy technique that shows where and when proteins are produced. The technique allows researchers to directly observe individual messenger RNA molecules (mRNAs) as they are translated into proteins in living cells. The technique, carried out in living human cells and fruit flies, should help reveal how irregularities in protein synthesis contribute to developmental abnormalities and human disease processes, including those involved in Alzheimer's disease and other memory-related disorders.

Related: Einstein College researchers determine molecular structure of key fluorescent proteins

The directions for making proteins are encoded in genes in the cell nucleus. Two steps—transcription and translation—must occur so that the gene's protein-making instructions will lead to actual proteins. In the first step, called transcription, the gene's DNA is "read" by molecules of mRNA. These mRNAs then migrate from the nucleus into the cytoplasm and attach to structures called ribosomes. That's where translation, the second step in protein synthesis, occurs: the mRNAs attached to ribosomes function as templates on which proteins are constructed.

To visualize translation, Robert H. Singer, Ph.D., professor and co-chair of anatomy and structural biology and co-director of the Gruss Lipper Biophotonics Center at Einstein, and his colleagues took advantage of a key occurrence during the first round of translation: the ribosome to which mRNAs attach must displace so-called RNA-binding proteins from the mRNAs. The researchers synthesized identical copies of mRNA molecules containing two fluorescent proteins, one green and one red. This meant that in the nucleus (where mRNAs are made), mRNAs labeled with both red and green proteins appear yellow. After migrating to the cytoplasm, the mRNAs can change color depending on their fate.

 

For mRNAs landing on ribosomes, the ribosome displaces the mRNAs' green fluorescent protein. As a result, these mRNA molecules—stripped of their green fluorescent proteins (GFPs), bound to ribosomes, and ready to be translated into a protein—appear red. Meanwhile, all the untranslated mRNA molecules remain yellow. The technique was dubbed Translating RNA Imaging by Coat protein Knock-off (TRICK).

In a test of TRICK, the collaborators in Germany studied when and where mRNAs for a gene called oskar are expressed in Drosophila eggs, or oocytes. (Drosophila, or fruit flies, are a frequently used model for understanding human disease, and oskar is critical for normal development of fruit fly embryos.) The researchers made oskar mRNAs tagged with red and green fluorescent proteins and inserted the tagged mRNAs into the nuclei of Drosophila oocytes.

"Using TRICK, oskar mRNAs were not translated until they reached the posterior pole of the oocyte," says Dr. Singer. "We suspected this, but now we have definitive proof. Going forward, researchers can use this technique to dissect the cascade of regulatory events required for mRNA translation during Drosophila development."

The researchers also found that protein translation doesn't start immediately after mRNAs exit the nucleus, but instead gets underway several minutes after mRNAs have entered the cytoplasm.

Full details of the work appear in the journal Science; for more information, please visit http://dx.doi.org/10.1126/science.aaa3380.

-----

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World