Cytometry method enables mechanical screening of biological cells at unprecedented speed

A new cytometry approach for the mechanical characterization of cells, developed by scientists at the Dresden University of Technology (Dresden, Germany), has the potential to revolutionize the diagnosis of a wide range of diseases. 

Related: Instrumentation advances add flexibility and quantitation to flow cytometry

So far, there has been a lack of an adequate method to mechanically screen large populations of cells in a short amount of time. Their small size poses a significant challenge for detailed mechanical characterization of single biological cells. Current methods available for such characterization are technically involved, difficult in their handling, and limited to small cell numbers and low measurement rates. But the research team, led by Professor Jochen Guck at the University's Biotechnology Center (BIOTEC), has now developed an innovative technology that addresses all these problems: Real-time deformability cytometry (RT-DC) enables continuous, on-the-fly mechanical screening of hundreds of cells per second, a method they claim is 10,000 times faster than previous methods. 

Real-time deformability cytometry (RT-DC) to determine the mechanical fingerprint of blood: Cells flow at a velocity of 10 cm/s from right to left through the microfluidic channel (width of the image shown: 1.5 mm). The sheath flow from the upper and lower right corners focuses the cells for cell deformability measurements in the narrowest part of the channel. This focusing causes the formation of heart-shaped streamlines as illustrated by an inverted overlay of many single frames. (Image: project ZellMechanik Dresden)

In a study, the scientists demonstrated the mechanical fingerprinting of the different types of cells contained in a drop of blood within a few minutes. Due to the very high throughput of RT-DC, even white blood cells, which are greatly outnumbered by the red blood cells by roughly 1:1000, can be reliably characterized. This is important because white blood cells constitute an important part of the immune system. Any characteristic change in their mechanical fingerprint could someday be used by medical doctors for a faster and better quantitative assessment of the health of patients.

Through the University spinoff company ZellMechanik Dresden, the next step for the researchers is to distribute the RT-DC technology commercially to a wide range of university and industrial researchers. Their ultimate goal is the development and commercialization of a dedicated, stand-alone diagnostic device.

Full details of the work appear in the journal Nature Methods; for more information, please visit http://dx.doi.org/10.1038/nmeth.3281.

-----

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

'Lab on a stick' test optically and rapidly detects antibiotic resistance

A point-of-care test, based on the dipstick method, can rapidly detect bacterial resistance to antibiotics in urine.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Microscope detects one million-plus biomarkers for sepsis in 30 minutes

A microscope has the potential to simultaneously detect more than one million biomarkers for sepsis at the point of care.

Photoacoustic imaging quantifies elasticity

Biomedical engineers in the US have developed a form of photoacoustic imaging that can quantify the elasticity of human tissue.
BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World