Blood vessel receptor that responds to blue LED light could treat vascular disease

A team of researchers from Johns Hopkins Medicine (Baltimore, MD) has discovered a receptor on blood vessels that causes the vessel to relax in response to blue light, making it potentially useful in treating vascular diseases.

Related: Blue LED light enables control of insulin secretion

The researchers—led by senior author Dan Berkowitz, MD, a professor in the Department of Anesthesiology and Critical Care Medicine—looked for expression of a light receptor in the blood vessels of mice and discovered a receptor called melanopsin, or opsin 4—one of a group of non-image-forming light receptors. In mice without opsin 4, blood vessels did not relax in response to light.

Upon further study, Berkowitz and his team were able to determine the exact wavelength (455 nm) at which opsin 4 is activated and the blood vessel relaxation response is maximal. The scientists could use this wavelength-specific light to increase blood flow in the tails of normal mice, but not in the tails of mice that lacked expression of opsin 4.

It will be important to determine if this phenomenon is present across all species and in all vascular beds, and to uncover all of the signaling and regulatory mechanisms that are linked to the receptor. Also, investigators will want to know if problems associated with the receptor are present in patients with vascular disease.

Berkowitz sees a variety of applications for his research. For example, his group hopes to target the opsin 4 receptor with wavelength-specific light as a therapeutic option for Raynaud's phenomenon, which is characterized by exaggerated vasoconstriction of the vessels of the fingers and toes. "We plan to use high-intensity light-emitting diodes, or LEDs, incorporated into gloves as a potential mode of therapy for these patients. Additionally, socks with LEDs could be used in diabetic patients to potentially enhance blood flow and heal chronic ischemic ulcers."

Full details of the work appear in the Proceedings of the National Academy of Sciences; for more information, please visit

(Thumbnail image via Shutterstock)


Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Wearable light therapy device for hair loss receives regulatory approval in Brazil

The iGrow hair growth system, a wearable low-level light therapy device for treating hair loss, is cleared for use in Brazil.

FDA authorizes emergency use of Zika virus molecular detection assay

The xMAP MultiFLEX Zika RNA assay combines optofluidics and digital signal processing to detect Zika virus in vitro.

Merz acquires laser tattoo removal device maker ON Light Sciences

Merz North America has acquired ON Light Sciences, which develops technologies to enhance laser-based dermatology procedures.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS