Photoacoustic imaging detects breast cancer without ionizing radiation

Researchers participating in the Optical Imaging and Laser Techniques for Biomedical Applications (OILTEBIA) project coordinated by the Charles III University of Madrid (UC3M) in Spain are developing a photoacoustic (optoacoustic) method to detect breast cancer, which could be a promising alternative to mammography or sonogram.

Related: Photoacoustic mammoscopy aims for safer, earlier breast cancer screening

Obtaining photoacoustic images for breast cancer detection is advantageous because, unlike x-rays, it does not require ionizing radiation. Photoacoustic imaging exploits the property of ultrasonic wave generation in tissue when it is illuminated with short, high-energy pulses of light. These signals make it possible to detect concentrations of chromophores (like oxygenated hemoglobin, deoxygenated hemoglobin, and lipids) and map tissue to find angiogenesis (the formation of new blood vessels from other ones), a process that occurs in the malignant transformation of tumor growth, the UC3M researchers explain. During OILTEBIA's European Summer School, which took place September 15-19, 2014, on UC3M's Leganés campus, they held a workshop on how to obtain these kinds of images with their laser optoacoustic imaging system along with a breast tissue simulator.

Photoacoustic imaging is advantageous for use in breast cancer detection because it does not require ionizing radiation
Photoacoustic imaging is advantageous for use in breast cancer detection because it does not require ionizing radiation.

The researchers also hope to make advances with regard to hardware, like the design of pulsed sources for high-energy laser diodes and laser characterization to generate photoacoustic waves. "As some of the partners in the project are large companies, it is possible the researchers will present designs for some very interesting and innovative devices," says Horacio Lamela, who notes that there is a lot of work on signal processing that might produce new advances, such as 3D-reconstruction algorithms and different types of image fusion, like optical spectroscopy and ultrasonic signal processing. "Using different wavelengths allows us not only to map tissues, but also detect certain substances and their concentrations," Lamela explains.

OILTEBIA is a type-Initial Training Network (ITN) European Union Seventh Framework Programme project. For more information, please visit


Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Microscope detects one million-plus biomarkers for sepsis in 30 minutes

A microscope has the potential to simultaneously detect more than one million biomarkers for sepsis at the point of care.

Eye test that pairs two in vivo imaging methods may detect Parkinson's earlier

A low-cost, noninvasive eye test pairs two in vivo imaging methods to help detect Parkinson's before clinical symptoms appear.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS