Handheld Raman scanner could assist in complete brain tumor removal

As cancerous brain tumors can grow back despite surgical attempts to remove them, scientists at the Memorial Sloan-Kettering Cancer Center (MSKCC; New York, NY) and colleagues have developed a method that relies on surface-enhanced Raman scattering (SERS) to distinguish malignant from healthy cells during surgery. In this way, fewer or no malignant cells get left behind to form new tumors.

Related: Stimulated Raman scattering could help boost accuracy of brain tumor surgery

Moritz F. Kircher, MD, Ph.D., a MSKCC radiologist who led the work, point outs that malignant brain tumors, particularly the kind known as glioblastoma multiforme (GBM), are among the toughest to beat. Surgical removal is one of the main weapons doctors have to treat brain tumors; however, there is no way to know if all cancerous cells have been removed. So, Kircher and his team used a handheld device resembling a laser pointer that, when guided by SERS nanoparticles, can identify tumors. The nanoparticles are injected the day prior to the operation and go specifically to tumor cells, and not to normal brain cells. Using a handheld Raman scanner in a mouse model that mimics human GBM, the researchers identified and removed all malignant cells in the rodents' brains.

A handheld device that resembles a laser pointer could someday help surgeons remove all of the cells in a brain tumor
A handheld device that resembles a laser pointer could someday help surgeons remove all of the cells in a brain tumor. (Image courtesy of Moritz Kircher)

Also, because the technique involves steps that have already made it to human testing for other purposes, the researchers conclude that it has the potential to move readily into clinical trials. Surgeons might be able to use the device in the future to treat other types of brain cancer, they say.

Full details of the team's work appear in the journal ACS Nano; for more information, please visit http://dx.doi.org/10.1021/nn503948b.

-----

Don't miss Strategies in Biophotonics, a conference and exhibition dedicated to development and commercialization of bio-optics and biophotonics technologies!

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Microscope detects one million-plus biomarkers for sepsis in 30 minutes

A microscope has the potential to simultaneously detect more than one million biomarkers for sepsis at the point of care.

Photoacoustic imaging quantifies elasticity

Biomedical engineers in the US have developed a form of photoacoustic imaging that can quantify the elasticity of human tissue.

Flow cytometry analyzes cell population to predict cancer immunotherapy response

Flow cytometry helped find that the amount of white blood cells in melanoma tumors can predict response to a cancer therapy.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World