New optical sensor can measure oxygen directly in cells, tissues

Biotechnology company ibidi GmbH (Munich, Germany) is presenting a new device that optically measures the exact oxygen content directly in cells and tissues. The ibidi OPAL Optical O2 Measurement System determines the correct oxygen content, which is a critical factor in maintaining the natural behavior of cells in culture. The tool is able to mimick the conditions of real tissue in in vitro experiments.

Related: A powerful pairing for cell studies: Correlative light and electron microscopy

With the system, extra- and intracellular oxygen concentrations in cells and tissues can be quickly determined in a few seconds. Subsequently, cell culture conditions can be adapted to the real conditions in tissues. In contrast to existing technologies, the measurement is noninvasive and occurs in real time, which is ideal for in vitro hypoxia conditions such as 3D cultures, spheroid models, and tissues.

The OPAL technology was developed by ibidi's cooperative partner, Colibri Photonics (Potsdam, Germany), and is now being marketed by ibidi GmbH. Company president Dr. Roman Zantl explains, "We, along with Colibri Photonics, want to advance the knowledge of oxygen conditions in cell culture because this is a crucial factor in cancer treatment."

Using the ibidi OPAL Optical O2 Measurement System enables optical oxygen measurement near or inside cells
Using the ibidi OPAL Optical O2 Measurement System enables optical oxygen measurement near or inside cells. (Image courtesy of ibidi GmbH)

Cells will only behave naturally when they are cultured under the specific conditions of their biological environment. In mammals, the most prominent conditions are temperature, pH, oxygen, and carbon dioxide concentration, and constant concentrations of salts and nutrients. To achieve biologically relevant results, it is crucial to maintain these conditions on the microscope stage during live cell imaging experiments.

In addition to controlling the oxygen concentration in the stage top incubator, it is indispensable to know the real oxygen concentration near the cells, or even inside the cells. Because cells consume oxygen, the concentrations are typically much lower in cell clusters, such as tissue or spheroids.

With the OPAL Optical O2 Measurement System, it is now possible to measure the real oxygen concentration directly inside the Petri dish. Oxygen-sensitive beads, or nanoparticle reagents, are used in combination with the system. By identifying changes in the fluorescence lifetime of these particles, the oxygen concentration in the immediate neighborhood—or directly inside the cells—can be determined.


Don't miss Strategies in Biophotonics, a conference and exhibition dedicated to development and commercialization of bio-optics and biophotonics technologies!

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!


Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Implantable polymer fiber emits fluorescence to reveal how cells grow

Fiber from a semiconducting polymer can emit fluorescence, which makes it possible to follow the growth of cells inside living tissue.

New super-resolution microscopy method is possible with single objective

A newly developed super-resolution microscopy method requires only a single objective and works with standard microscopy systems.

Imaging system combines five molecular imaging techniques

A newly developed system combines five molecular imaging techniques for multimodal imaging of both tissue models and live subjects.

Silicone microspheres show promise for medical imaging, targeted drug delivery

Chemists have produced silicone microspheres that could enable next-generation medical imaging and targeted medicine.

Low-light CMOS biosensor enables detection of four copies of pathogen DNA per sample

Anitoa Systems has demonstrated handheld, real-time qPCR using its ultra-low-light CMOS biosensor.

Silver nanoclusters inside synthetic DNA have utility in bioimaging

A team of researchers has created nanoscale silver clusters with unique fluorescence properties important for bioimaging.

GWU installs correlative microscopy system at its new research facility

George Washington University will install a correlative light and electron microscopy system at its Science and Engineering Hall.

Ultrafast laser technique enables nondestructive 3D imaging of cells

An ultrafast laser technique can achieve micron resolution of single cells, imaging their interiors in slices separated by 150 nm.

Super-resolution microscopy unravels inner structure of herpes simplex virus

A team of researchers has developed a technique that allows super-resolution microscopy to be used as a structural tool for the study of viruses.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

Most Popular Articles



Twitter- BioOptics World

Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS