New optical sensor can measure oxygen directly in cells, tissues

Biotechnology company ibidi GmbH (Munich, Germany) is presenting a new device that optically measures the exact oxygen content directly in cells and tissues. The ibidi OPAL Optical O2 Measurement System determines the correct oxygen content, which is a critical factor in maintaining the natural behavior of cells in culture. The tool is able to mimick the conditions of real tissue in in vitro experiments.

Related: A powerful pairing for cell studies: Correlative light and electron microscopy

With the system, extra- and intracellular oxygen concentrations in cells and tissues can be quickly determined in a few seconds. Subsequently, cell culture conditions can be adapted to the real conditions in tissues. In contrast to existing technologies, the measurement is noninvasive and occurs in real time, which is ideal for in vitro hypoxia conditions such as 3D cultures, spheroid models, and tissues.

The OPAL technology was developed by ibidi's cooperative partner, Colibri Photonics (Potsdam, Germany), and is now being marketed by ibidi GmbH. Company president Dr. Roman Zantl explains, "We, along with Colibri Photonics, want to advance the knowledge of oxygen conditions in cell culture because this is a crucial factor in cancer treatment."

Using the ibidi OPAL Optical O2 Measurement System enables optical oxygen measurement near or inside cells
Using the ibidi OPAL Optical O2 Measurement System enables optical oxygen measurement near or inside cells. (Image courtesy of ibidi GmbH)

Cells will only behave naturally when they are cultured under the specific conditions of their biological environment. In mammals, the most prominent conditions are temperature, pH, oxygen, and carbon dioxide concentration, and constant concentrations of salts and nutrients. To achieve biologically relevant results, it is crucial to maintain these conditions on the microscope stage during live cell imaging experiments.

In addition to controlling the oxygen concentration in the stage top incubator, it is indispensable to know the real oxygen concentration near the cells, or even inside the cells. Because cells consume oxygen, the concentrations are typically much lower in cell clusters, such as tissue or spheroids.

With the OPAL Optical O2 Measurement System, it is now possible to measure the real oxygen concentration directly inside the Petri dish. Oxygen-sensitive beads, or nanoparticle reagents, are used in combination with the system. By identifying changes in the fluorescence lifetime of these particles, the oxygen concentration in the immediate neighborhood—or directly inside the cells—can be determined.

-----

Don't miss Strategies in Biophotonics, a conference and exhibition dedicated to development and commercialization of bio-optics and biophotonics technologies!

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World