New optical sensor can measure oxygen directly in cells, tissues

Biotechnology company ibidi GmbH (Munich, Germany) is presenting a new device that optically measures the exact oxygen content directly in cells and tissues. The ibidi OPAL Optical O2 Measurement System determines the correct oxygen content, which is a critical factor in maintaining the natural behavior of cells in culture. The tool is able to mimick the conditions of real tissue in in vitro experiments.

Related: A powerful pairing for cell studies: Correlative light and electron microscopy

With the system, extra- and intracellular oxygen concentrations in cells and tissues can be quickly determined in a few seconds. Subsequently, cell culture conditions can be adapted to the real conditions in tissues. In contrast to existing technologies, the measurement is noninvasive and occurs in real time, which is ideal for in vitro hypoxia conditions such as 3D cultures, spheroid models, and tissues.

The OPAL technology was developed by ibidi's cooperative partner, Colibri Photonics (Potsdam, Germany), and is now being marketed by ibidi GmbH. Company president Dr. Roman Zantl explains, "We, along with Colibri Photonics, want to advance the knowledge of oxygen conditions in cell culture because this is a crucial factor in cancer treatment."

Using the ibidi OPAL Optical O2 Measurement System enables optical oxygen measurement near or inside cells
Using the ibidi OPAL Optical O2 Measurement System enables optical oxygen measurement near or inside cells. (Image courtesy of ibidi GmbH)

Cells will only behave naturally when they are cultured under the specific conditions of their biological environment. In mammals, the most prominent conditions are temperature, pH, oxygen, and carbon dioxide concentration, and constant concentrations of salts and nutrients. To achieve biologically relevant results, it is crucial to maintain these conditions on the microscope stage during live cell imaging experiments.

In addition to controlling the oxygen concentration in the stage top incubator, it is indispensable to know the real oxygen concentration near the cells, or even inside the cells. Because cells consume oxygen, the concentrations are typically much lower in cell clusters, such as tissue or spheroids.

With the OPAL Optical O2 Measurement System, it is now possible to measure the real oxygen concentration directly inside the Petri dish. Oxygen-sensitive beads, or nanoparticle reagents, are used in combination with the system. By identifying changes in the fluorescence lifetime of these particles, the oxygen concentration in the immediate neighborhood—or directly inside the cells—can be determined.

-----

Don't miss Strategies in Biophotonics, a conference and exhibition dedicated to development and commercialization of bio-optics and biophotonics technologies!

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

LuxCath optical tissue characterization catheter enables real-time monitoring during cardiac ablation

A study used optical tissue characterization technology for the first time in procedures to treat arrhythmia patients.

EUV spectral imaging tool can map cell composition in 3D

A newly developed spectral imaging instrument enables observation of how cells respond to new medications at a minute level.

Fluorescence Imaging: Optical filtering basics for life sciences

Optical filters can have a dramatic effect on outcomes in life sciences. These principles demonstrate how next-generation thin film enhances excitation and emission in fluorescence bioimaging syste...

Photoacoustics/Biomedical Imaging: Photoacoustic imaging progresses toward medical diagnostics

Recent technological developments in laser and transducer hardware, contrast agents, and image reconstruction algorithms have helped to advance photoacoustic (or optoacoustic) imaging.  

Translational Research: Bench-to-bedside: Progress, pioneers, and 21st Century Cures

The NIH/SPIE Biophotonics from Bench to Bedside workshop (Sept. 24-25) featured speakers and posters presenting exciting translational research in technologies and applications.

Legislation promises biophotonics opportunities

The 21st Century Cures Act (H.R. 6) was a focal point at the NIH/SPIE Biophotonics from Bench to Bedside workshop.

Zeiss partners with Molecular Imaging Platform at McGill University Health Centre

Zeiss has entered into a partnership with the Research Institute of the McGill University Health Centre's Molecular Imaging Platform.

Biophotonics innovator Ozcan wins International Commission for Optics Prize

UCLA professor and biophotonics innovator Aydogan Ozcan has received the International Commission for Optics (ICO) Prize.

New biosensor provides spatially resolved hydrogen peroxide sensing in cells

A new biosensor is able to show the location of the key cellular signaling chemical inside living cells with high resolution over time.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS