NIH grant backs multimodal image analysis method for glaucoma assessment

The Iowa City VA Medical Center (Iowa City, IA) has received a three-year 2014 NIH Grant for proposed glaucoma assessment work using a multimodal image analysis approach. Principal investigator for the work is Mona Garvin, an assistant professor of Electrical and Computer Engineering and a researcher at the Iowa Institute for Biomedical Imaging, both of the University of Iowa's College of Engineering.

Related: High-performance SD-OCT improves depth and speed for ophthalmic imaging

The grant, in the form of a Career Development Award-2 (CDA-2), will provide Garvin the ability to develop into an ophthalmic image analysis expert with an unprecedented level of clinical understanding for an engineering-trained scholar, as well as the ability to contribute substantially to interdisciplinary translational and clinically oriented ophthalmic research of interest to veterans. Because of the current variability associated with standard functional measurements for the diagnosis and assessment of glaucoma, the research plan is designed to work towards obtaining better structural parameters to enable (1) improved diagnostic capabilities, (2) an objective basis for disease staging, and (3) an improved ability to measure disease progression.

More specifically, with the overall hypothesis that the multimodal combination of information from stereo fundus photography and spectral-domain optical coherence tomography (SD-OCT) will enable the discovery of less variable (across normal subjects) and more reproducible structural parameters relevant to the diagnosis, management, or understanding of glaucoma, the plan addresses the following:

  • Develop the novel multimodal methodology for obtaining less variable layer-thickness and more reproducible optic-nerve-head structural parameters for the assessment of glaucoma;
  • Develop the methodology for simultaneously segmenting the blood vessels in fundus photographs and SD-OCT volumes. Refine the methodology for correcting the retinal nerve fiber layer thickness/volume and ganglion cell layer thickness/volume in SD-OCT volumes based on the presence of blood vessels derived from SD-OCT and/or fundus photography. Verify that such a correction results in a lower variability in regional thickness measurements across normal subjects;
  • Develop the methodology for simultaneously segmenting the optic disc, neural canal opening, and cup in SD-OCT images and stereo fundus photographs. Compute the reproducibility of such measurements in normal eyes and in eyes with glaucoma;
  • Characterize the relationship between the inner layers of the retina and the outer layers of the retina in normal eyes and in eyes varying in refractive error, axial eye length, and age. Determine whether this relationship will enable reduced variability of inner retinal thickness measurements across normal subjects and better correlation of thickness parameters with disease status in glaucoma subjects; and
  • Relate the thickness/volume of the inner retinal layer containing ganglion cells (corrected and uncorrected based on the presence of vessels) to a) the retinal nerve fiber layer thickness (corrected and uncorrected based on the presence of vessels) and b) the cross-sectional area of the rim tissue at the plane of the neural canal opening in normal and glaucoma subjects.

In addition to its direct relevance to glaucoma, the image analysis methodology developed as part of the research plan will be relevant to telemedical applications and other ophthalmic (and systemic) diseases. This will thus enable further benefit for the veteran population and will set the stage for future research in these areas by the nominee.

For more information on Garvin and her published work, please visit


Don't miss Strategies in Biophotonics, a conference and exhibition dedicated to development and commercialization of bio-optics and biophotonics technologies!

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Merz acquires laser tattoo removal device maker ON Light Sciences

Merz North America has acquired ON Light Sciences, which develops technologies to enhance laser-based dermatology procedures.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Laser therapy extracts rare tumor that grew human hair, skin in boy's skull

About four years ago, a tumor comprised of human skin, hair, bone and cartilage was fast-growing inside a Ramsey, MN, 10-year-old youth's brain.

Low-level laser therapy could speed muscle recovery at Rio 2016 Olympics

The gold medal-winning women’s U.S. Gymnastics team is reportedly experimenting with infrared light therapy to alleviate pain and reduce swelling in its athletes. (Update: A spokesperson for ...

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World