Shrink wrap can boost fluorescent marker detection in biosensing 1000X

Researchers at the University of California, Irvine turned to plastic shrink wrap to help make highly sensitive, extremely low-cost diagnosis of infectious disease agents possible. By depositing a combination of metals onto the shrink wrap, they were able to significantly boost the signal of fluorescent markers used in biosensing.

Related: Fluorescent labeling 101

"Using commodity shrink wrap and bulk manufacturing processes, we can make low-cost nanostructures to enable fluorescence enhancements greater than a thousand-fold, allowing for significantly lower limits of detection," says paper co-author Michelle Khine, a biomedical engineering professor at UC Irvine. “If you have a solution with very few molecules that you are trying to detect—as in the case of infectious diseases—this platform will help amplify the signal so that a single molecule can be detected.”

Close-up images of the new shrink wrap nanostructures taken with a scanning electron microscope (SEM). Each image depicts the shrink wrap’s surface with a fixed amount of nickel (5 nm) and different thicknesses of gold in the metal coating. Top: 10 nm thick. Middle: 20 nm thick. Bottom: 30 nm thick. The black arrows in the top image indicate a nanogap
Close-up images of the new shrink wrap nanostructures taken with a scanning electron microscope (SEM). Each image depicts the shrink wrap’s surface with a fixed amount of nickel (5 nm) and different thicknesses of gold in the metal coating. Top: 10 nm thick. Middle: 20 nm thick. Bottom: 30 nm thick. The black arrows in the top image indicate a nanogap. (All images courtesy of Optical Materials Express)

In the new method developed by Khine and her graduate student Himanshu Sharma, along with their collaborators, Professors Enrico Gratton and Michelle Digman, also at UC Irvine, thin layers of gold and nickel are first deposited onto a thermoplastic polymer (a shrink wrap film). When heated, the shrink wrap contracts, causing the stiffer metal layers to buckle and wrinkle into flower-like structures that are significantly smaller than previously demonstrated. To the top of the wrinkled metal layer, the researchers add samples of biomarkers, antibodies generated by the immune system in response to infection with a certain pathogen. These biomarkers are tagged with fluorescent probes to allow their detection under near-infrared (NIR) light.

The team found that the shrink wrap’s wrinkles significantly enhanced the intensity of the signals emitted by the biomarkers. The enhanced emission, Khine says, is due to the excitation of localized surface plasmons—coherent oscillations of the free electrons in the metal. When researchers shined a light on their wrinkled creation, the electromagnetic field was amplified within the nanoscale gaps between the shrink wrap’s folds, Khine said. This produced “hotspots”—areas characterized by sudden bursts of intense fluorescence signals from the biomarkers.

In their study, the researchers used an immune system molecule known as immunoglobin G (IgG) as the biomarker. “IgG is one of the most common circulating antibodies in the immune system, making up about 80 percent of the all antibodies in the body, and is found in most bodily fluids,” Sharma says. In particular, IgG is a good biomarker for the detection of rotavirus, the virus that is the leading cause of severe diarrheal infection in infants and young children worldwide. IgG is also a biomarker for infection with the Epstein-Barr virus and Herpes simplex virus.

In the future, he says, additional antibodies, such as immunoglobulin A (IgA) and immunoglobulin M (IgM), might be used to detect other agents including cytomegalovirus and the pathogen that causes typhoid fever.

Close-up images taken with a scanning electron microscope (SEM) showing the shrink wrap’s surface with a fixed amount of gold (10 nm) and different thicknesses of nickel in the metal coating. Left: 5 nm thick. Middle: 15 nm thick. Right: 25 nm thick
Close-up images taken with a scanning electron microscope (SEM) showing the shrink wrap’s surface with a fixed amount of gold (10 nm) and different thicknesses of nickel in the metal coating. Left: 5 nm thick. Middle: 15 nm thick. Right: 25 nm thick.

“The technique should work with measuring fluorescent markers in biological samples, but we have not yet tested bodily fluids,” says Khine, who cautions that the technique is far from ready for clinical use. For example, she notes, “We are currently working on trying to detect rotavirus, but one of the main challenges is that our surface is hydrophobic”—that is, water-repelling—“so diffusion of the biomarker onto our composite structures is limited.”

Though their current setup requires the use of expensive equipment, the researchers say, they believe their work will pave the way to creating an integrated, low-cost device to trap and identify biomarkers.

Full details of the work appear in the journal Optical Materials Express; for more information, please visit http://dx.doi.org/10.1364/OME.4.000753.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS