Photodetector nanotechnology enables photos in low-light conditions, with use in medical imaging applications

Dark and blurry low-light photos could soon be a thing of the past, thanks to SUNY College of Nanoscale Science and Engineering (CNSE) scientists who have developed ultrathin "nanosheets" that could dramatically improve imaging technology used in everything from cell phone cameras, video cameras, solar cells, and medical imaging equipment.

Related: Inexpensive approach speeds photodetector used in medical imaging

The work would also be cost-effective to implement: The ultrathin indium selenide (In2Se3)-based photodetectors use less material because they consist of nano-sized components that are highly efficient at detecting light in real time. As a result, the technology can be included in a wide variety of everyday devices, including smartphones that are often used to take pictures, but suffer from limitations in low-light environments.
 
"Currently, the sensors in digital cameras cannot take quality images under low-light conditions. For example, taking a good picture in a dimly lit room requires a long exposure, which often results in a blurred image," says Robin Jacobs-Gedrim, CNSE research assistant. "Future cameras based on these nanosheet photodetectors may be able to provide a robust, real-time picture in even the most extreme low-light conditions."

Jacobs-Gedrim adds that their work could also lead to next-generation applications such as making solar panels more efficient, scientific instruments more precise, and medical imaging equipment more accurate.

Full details of the work appear in the journal ACS Nano; for more information, please visit http://dx.doi.org/10.1021/nn405037s.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

POST A COMMENT

Related Articles

Nanosecond laser therapy helps slow age-related macular degeneration

Nanosecond laser therapy helps slow age-related macular degeneration

Seeking to find more effective laser therapy to slow down age-related macular generation (AMD), a team of researchers has found that nanosecond laser therapy did not result in damage to the retina,...
Blood vessel receptor that responds to blue LED light could treat vascular disease

Blood vessel receptor that responds to blue LED light could treat vascular disease

A team of researchers has discovered a receptor on blood vessels that causes the vessel to relax in response to blue light, making it potentially useful in treating vascular diseases.

Fluorescence imaging and MRI-capable nanoparticles could track disease

Fluorescence imaging and MRI-capable nanoparticles could track disease

Chemists at MIT have developed new nanoparticles that can perform fluorescence imaging along with magnetic resonance imaging (MRI) in living animals.

OPTICAL FIBER FOR MEDICAL APPLICATIONS: Improved deep-UV fiber for medical and spectroscopy applications

A new solarization-resistant silica fiber can be used even at the 214 and 265 nm absorption bands of silica and at small diameters useful for in vivo medical applications.

BLOGS

Optogenetics among photonics techniques highlighted at Neuroscience 2014

Optogenetics among photonics techniques highlighted at Neuroscience 2014

Technology in general, and optogenetics in particular, is a focus here at Neuroscience 2015, wher...
BioOptics World editor-in-chief Barbara Goode

What is biophotonics?

At BioOptics World, our focus is photonics (including optics) for life sciences—that is, biophoto...

Nobel Prize honors super-resolution optical microscopy

"This year's prize is about how the optical microscope became a nanoscope," said Staffa...

Most Popular Articles


CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS