Photodetector nanotechnology enables photos in low-light conditions, with use in medical imaging applications

Dark and blurry low-light photos could soon be a thing of the past, thanks to SUNY College of Nanoscale Science and Engineering (CNSE) scientists who have developed ultrathin "nanosheets" that could dramatically improve imaging technology used in everything from cell phone cameras, video cameras, solar cells, and medical imaging equipment.

Related: Inexpensive approach speeds photodetector used in medical imaging

The work would also be cost-effective to implement: The ultrathin indium selenide (In2Se3)-based photodetectors use less material because they consist of nano-sized components that are highly efficient at detecting light in real time. As a result, the technology can be included in a wide variety of everyday devices, including smartphones that are often used to take pictures, but suffer from limitations in low-light environments.
 
"Currently, the sensors in digital cameras cannot take quality images under low-light conditions. For example, taking a good picture in a dimly lit room requires a long exposure, which often results in a blurred image," says Robin Jacobs-Gedrim, CNSE research assistant. "Future cameras based on these nanosheet photodetectors may be able to provide a robust, real-time picture in even the most extreme low-light conditions."

Jacobs-Gedrim adds that their work could also lead to next-generation applications such as making solar panels more efficient, scientific instruments more precise, and medical imaging equipment more accurate.

Full details of the work appear in the journal ACS Nano; for more information, please visit http://dx.doi.org/10.1021/nn405037s.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

POST A COMMENT

Related Articles

Label-free optical biosensor can detect rotavirus

Researchers at the Universidad Politécnica de Madrid (UPM) in Spain, using a label-free optical biosensor they developed, have found a way to enhance detection capacity of small concentrations of r...
Synthetic, blue light-sensitive molecular switches can be utilized to control biochemical signaling processes in living cells

Blue LED light enables control of insulin secretion

An international team of researchers has incorporated a synthetic, blue light-sensitive molecular switch into a sulfonylurea compound—a class of drugs widely used to regulate blood glucose levels i...

Abbott, Carl Zeiss Meditec enter distribution agreement for laser cataract surgery product portfolio

Abbott Medical Optics (Santa Ana, CA) and Carl Zeiss Meditec (Jena, Germany) have entered into a nonexclusive agreement in which Abbott will offer each company's suite of laser cataract surgery pro...

Photodynamic therapy for deep cancer cells could get a boost with new nanoparticle

An international team of researchers has combined a new type of nanoparticle with an FDA-approved photodynamic therapy (PDT) to effectively kill deep-set cancer cells in vivo with minimal damage to...
BLOGS

Single-molecule tracking promises discoveries, cures

New ways of imaging individual proteins and lipids will ultimately change science and medicine.

Growth in lasers for medicine

At the Lasers and Photonics Marketplace Seminar during SPIE Photonics West 2015, analyst Allen No...

Also at BiOS 2015

Although the BiOS Expo closes on Sunday, February 8, 2015, the conferences of the Biomedical Opti...

Most Popular Articles


CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS