New fiber laser with 25X more light emission promising for breath analysis

Physics researchers at the University of Adelaide in Australia have developed a new fiber laser that will enable breath analysis for disease diagnosis, as well as remote sensing of critical greenhouse gases.

Related: Noninvasive medical breath analysis with sensitive IR spectroscopy

Related: Crowd-sourced measurements offer a unique view of pollution's effects

The researchers, who hail from the University's Institute for Photonics and Advanced Sensing and the School of Chemistry and Physics, have been able to produce 25 times more light emission than other lasers operating at a similar wavelength, opening the way for detection of very low concentrations of gases.

"This laser has significantly more power and is much more efficient than other lasers operating in this frequency range," says Ori Henderson-Sapir, PhD researcher. "Using a novel approach, we've been able to overcome the significant technical hurdles that have prevented fiber lasers from producing sufficient power in the mid-infrared."

Related: NSF proposes center for mid-IR medical systems

The new laser operates in the mid-infrared (mid-IR) frequency range—the same wavelength band in which many important hydrocarbon gases absorb light.

"Probing this region of the electromagnetic spectrum, with the high power we've achieved, means we will be able to detect these gases with a high degree of sensitivity," says project leader Dr. David Ottaway. "For instance, it should enable the possibility of analyzing trace gases in exhaled breath in the doctors' surgery."

Research has shown that with various diseases, minute amounts of gases not normally exhaled can be detected in the breath; for example, acetone can be detected in the breath when someone has diabetes.

Other potential applications include detection in the atmosphere of methane and ethane, which are important gases in global warming.

"The main limitation to date with laser detection of these gases has been the lack of suitable light sources that can produce enough energy in this part of the spectrum," says Ottaway. "The few available sources are generally expensive and bulky and, therefore, not suitable for widespread use."

The new laser uses an optical fiber, which is easier to work with, less bulky, more portable, and much more cost-effective to produce than other types of lasers.

The researchers, who also include Jesper Munch, Emeritus Professor of Experimental Physics, reported light emission at 3.6 µm—the deepest mid-IR emission from a fiber laser operating at room temperature. They have also shown that the laser has the promise of efficient emission across a large wavelength spectrum from 3.3 to 3.8 µm.

"This means it has incredible potential for scanning for a range of gases with a high level of sensitivity, with great promise as a very useful diagnostic and sensing tool," says Ottaway.

Full research details appear in the journal Optics Letters; for more information, please visit http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-39-3-493.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Low-cost device exploits birefringence for point-of-care diagnostics

A new diagnostic method based on birefringence can easily, rapidly, and reliably detect malaria, Ebola, or HIV, among others.

LuxCath optical tissue characterization catheter enables real-time monitoring during cardiac ablation

A study used optical tissue characterization technology for the first time in procedures to treat arrhythmia patients.

Microscope scans images 2000X faster for near-real-time videos of nanoscale processes

Engineers have designed an atomic force microscope (AFM) that scans images 2000 times faster than existing commercial models.

Fluorescence Imaging: Optical filtering basics for life sciences

Optical filters can have a dramatic effect on outcomes in life sciences. These principles demonstrate how next-generation thin film enhances excitation and emission in fluorescence bioimaging syste...

Translational Research: Bench-to-bedside: Progress, pioneers, and 21st Century Cures

The NIH/SPIE Biophotonics from Bench to Bedside workshop (Sept. 24-25) featured speakers and posters presenting exciting translational research in technologies and applications.

Legislation promises biophotonics opportunities

The 21st Century Cures Act (H.R. 6) was a focal point at the NIH/SPIE Biophotonics from Bench to Bedside workshop.

Biophotonics innovator Ozcan wins International Commission for Optics Prize

UCLA professor and biophotonics innovator Aydogan Ozcan has received the International Commission for Optics (ICO) Prize.

Hydrogel bandage with embedded LEDs can deliver medicine to the skin

A newly developed hydrogel matrix can incorporate LEDs, other components, and tiny reservoirs and channels for drug delivery.

Preclinical studies demonstrate effectiveness of laser technologies for local pain control

Two laser methods can trigger on-demand release of a local anesthetic to provide repeatable, long-lasting pain management.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS