Optical techniques help assess the impact of toxic agents in cells

Seeking a way to accurately determine the toxicity of nanomaterials in cells, researchers at École Polytechnique Fédérale de Lausanne (EPFL; Lausanne, Switzerland) turned to optical techniques—including measuring the light absorbed by certain proteins—to measure the oxidative stress that some of them provoke on cells. 

Related: Raman, nanotechnology approach detects, tracks and kills cancer cells

Related: Low-intensity laser enables label-free approach to computed 3D live cell imaging

When a cell is exposed to a toxic product or a pathogen, this causes the internal equilibrium between the oxidants and antioxidants within the cell to break. Then the former, generally oxygen derivatives, are produced in excessive quantities and start to attack the cell’s proteins, sugars, and its membrane. This brings about a faster cellular aging, causes certain diseases to the cell, and may even lead to its death.

EPFL researchers have developed a method for accurately determining the toxicity of nanomaterials. By using optical techniques, they are able to measure the concentration of the oxidizing substances produced by a damaged cell. Furthermore, this research also offers a new way to know more about the mechanisms of oxidative stress
EPFL researchers have developed a method for accurately determining the toxicity of nanomaterials. By using optical techniques, they are able to measure the concentration of the oxidizing substances produced by a damaged cell. Furthermore, this research also offers a new way to know more about the mechanisms of oxidative stress.

Thus, the overproduction of such oxidants is a sign that the cell is stressed, and that is exactly what researchers wanted to measure. At the same time, they noticed that cytochrome c, a protein present in the cellular membrane, was a particularly interesting biosensor. They found that when it was exposed to certain wavelengths of light, this protein would absorb less light when in the presence of one of these oxidizing agents: hydrogen peroxide. Consequently, they developed a complex method for measuring the variations of light absorbed by cytochrome c. Finally, they tested and verified their method on small unicellular algae.

To this day, there were no truly reliable methods for measuring oxidative stress continuously and without damaging the cells. This new test has opened interesting possibilities for identifying not only the effect of nanomaterials, but also, on a wider perspective, the way cells react to an external perturbation. In addition, during their experiments researchers were able to observe that the toxicity of certain products could be conditioned and modulated by its surrounding environment. For example; a nanomaterial may be less dangerous under a laboratory microscope than within a river’s waters.

"The test that we propose is highly sensitive and able to indicate the concentration of oxygen derivatives in a thorough and detailed way," says Olivier Martin, director of the Nanophotonics and Metrology Laboratory (NAM) at EPFL. "Since it is based in assessing a substance released outside the cells, it is also noninvasive. Therefore, it does not destroy the living organism and can be applied over a period of several hours making it possible to observe the evolution of the situation over time."

Full details of the work appear in the journal Scientific Reports; for more information, please visit http://www.nature.com/srep/2013/131209/srep03447/full/srep03447.html.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Merz acquires laser tattoo removal device maker ON Light Sciences

Merz North America has acquired ON Light Sciences, which develops technologies to enhance laser-based dermatology procedures.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Laser therapy extracts rare tumor that grew human hair, skin in boy's skull

About four years ago, a tumor comprised of human skin, hair, bone and cartilage was fast-growing inside a Ramsey, MN, 10-year-old youth's brain.

Low-level laser therapy could speed muscle recovery at Rio 2016 Olympics

The gold medal-winning women’s U.S. Gymnastics team is reportedly experimenting with infrared light therapy to alleviate pain and reduce swelling in its athletes. (Update: A spokesperson for ...
BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World