NIR quantitative phase imaging enables label-free cell imaging through silicon

A team of scientists from the University of Texas at Arlington and the Massachusetts Institute of Technology (MIT; Cambridge, MA) has figured out how to quantitatively observe cellular processes taking place on lab-on-a-chip devices in a silicon environment. The new technology will be useful in drug development as well as in disease diagnosis, the researchers say.

In a paper published in Nature's online journal Scientific Reports, the team said it overcame past limitations on quantitative microscopy through an opaque media by working with a new combination of near-infrared (NIR) light and a technique called quantitative phase imaging. A decade-old technique, quantitative phase imaging uses shifts in phases of light, not staining techniques, to aid specimen imaging—hence the term "€œlabel-free."

Related: Shining near-infrared light on life

"To the best of our knowledge, this is the first demonstration of quantitative phase imaging of cellular structure and function in silicon environment,"€ says Assistant Professor of Physics Samarendra Mohanty, head of the Biophysics and Physiology Laboratory at UT Arlington and corresponding author on the paper.  

The research team was able to prove success in analyzing specimens through a silicon wafer in two instances. In one, they accomplished full-field imaging of the features of red blood cells to nanometer-thickness accuracy. In another, they observed dynamic variation of human embryonic kidney cells in response to change in salt concentration. Mohanty believes that his group'€™s current work on NIR quantitative phase imaging can lead to noninvasive, label-free monitoring of neuronal activities.

"€œSilicon-based micro devices known as labs-on-a-chip are revolutionizing high throughput analysis of cells and molecules for disease diagnosis and screening of drug effects. However, very little progress has been made in the optical characterization of samples in these systems,"€ says Bipin Joshi, a recent graduate and lead author on the paper. "The technology we'€™ve developed is well suited to meet this need."

Ishan Barman, now an assistant professor at Johns Hopkins University, said the new paper is a prime example of the type of research he hopes to do—€”projects pulled by needs of the biomedical community and continually pushing the edge of biophotonic solutions.

"€œWe envision that this significantly expands the visualization possible in silicon based microelectronic and micromechanical devices,"€ he says.

Full details of the work appear in Scientific Reports; for more information, please visit http://www.nature.com/srep/2013/131002/srep02822/full/srep02822.html.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

POST A COMMENT

Related Articles

Automated laser-based cell manipulation can generate stem cells for pathology

Scientists at Sanford-Burnham Medical Research Institute, an induced pluripotent stem cell (iPSC) generator, have collaborated with synthetic biology company Intrexon on a study using the company's...

Syneron Candela picosecond laser for tattoo removal receives FDA clearance

Aesthetic laser maker Syneron Medical (NASDAQ: ELOS) has received FDA approval for its PicoWay picosecond laser, which  generates picosecond pulses for tattoo removal of all colors.

Label-free optical biosensor can detect rotavirus

Researchers at the Universidad Politécnica de Madrid (UPM) in Spain, using a label-free optical biosensor they developed, have found a way to enhance detection capacity of small concentrations of r...
Synthetic, blue light-sensitive molecular switches can be utilized to control biochemical signaling processes in living cells

Blue LED light enables control of insulin secretion

An international team of researchers has incorporated a synthetic, blue light-sensitive molecular switch into a sulfonylurea compound—a class of drugs widely used to regulate blood glucose levels i...

BLOGS

Optogenetics among photonics techniques highlighted at Neuroscience 2014

Optogenetics among photonics techniques highlighted at Neuroscience 2014

Technology in general, and optogenetics in particular, is a focus here at Neuroscience 2015, wher...
BioOptics World editor-in-chief Barbara Goode

What is biophotonics?

At BioOptics World, our focus is photonics (including optics) for life sciences—that is, biophoto...

Nobel Prize honors super-resolution optical microscopy

"This year's prize is about how the optical microscope became a nanoscope," said Staffa...

Most Popular Articles


CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS