Four-lens light-sheet microscope delivers whole-embryo images in real time

A team of researchers from the Max Planck Institute and Technical University (both in Dresden, Germany) has created the first microscope that processes image data in real time and provides the researcher with results rather than raw data. Using two high-speed sCMOS cameras (Andor Technology's Zyla sCMOS models) in a specially designed four-lens selective plane illumination microscope (SPIM) with on-board image processing, the team delivered undistorted, high-resolution images of the entire endoderms of multiple zebrafish embryos in <10 s.

According to Jan Huisken, the Research Group Leader at the Max Planck Institute, "We exploited the spherical geometry of the embryos and the speed and sensitivity of the Zyla sCMOS camera to compute a radial maximum intensity projection of each individual embryo during image acquisition. An entire zebrafish embryo can now be instantaneously projected onto a 'world map' to visualize all endodermal cells and follow their fate. This reveals characteristic migration patterns and global tissue remodelling in the early endoderm and, by merging data from many samples, we have uncovered stereotypical patterns that are fundamental to embryo development."

Optical setup of the four-lens selective plane illumination microscope (SPIM) showing the dual sCMOS cameras
Optical setup of the four-lens selective plane illumination microscope (SPIM) showing the dual sCMOS cameras.

Huisken adds that the raw data from the cameras were not saved at any point, meaning that any 3D information not captured in the projection was lost. But the radial projection delivered immediate, pre-processed data for analysis and enabled experiments to be repeated rapidly. "This new technique will not eliminate the need for slow 3D imaging techniques in more complex shapes, but it is a highly effective strategy to streamline further analysis and increase throughput in many applications," he explains.

For more information on the work, which appears in the journal Nature Communications, please visit http://www.nature.com/ncomms/2013/130725/ncomms3207/full/ncomms3207.html.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Microscope detects one million-plus biomarkers for sepsis in 30 minutes

A microscope has the potential to simultaneously detect more than one million biomarkers for sepsis at the point of care.

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

Adaptive optics enhances super-resolution microscopy for cell imaging

A new ultra-high resolution nanoscope can take 3D images of an entire cell and its cellular constituents in unprecedented detail.

Fluorescence microscopy approach captures three views of a sample simultaneously

A new fluorescence microscopy approach improves image resolution by acquiring three views of a sample at the same time.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World