Integrated optical technique speeds cancer diagnosis during surgery

Researchers at the University of Nottingham in England have developed an integrated optical technique that can produce a detailed spectroscopic fingerprint of each tissue layer removed during surgery. The technique—which can produce detailed maps of the tissue rich in information at the molecular level—has the potential to speed up and improve diagnosis of cancer tissue during operation, as well as reduce unnecessary surgery.

Related: Biophotonics enables early and accurate cancer diagnosis

The research team, led by Ioan Notingher, Ph.D., an associate professor in the School of Physics and Astronomy, is now looking to build an instrument that can be tested in the clinic, enabling diagnosis of each tissue layer in few minutes rather than hours.

"The real challenge is to know where the cancer starts and ends when looking at it during an operation so that the surgeon knows when to stop cutting," explains Notingher. "Our technique can also diagnose the presence or absence of skin cancer in thick chunks of skin tissue, making it unnecessary to cut the tissue up further into thin slices."

Notingher's technique is based on autofluorescence (natural fluorescence from the tissue) and Raman spectroscopy (a highly sensitive technique using lasers to identify the molecules in a tissue sample), and does not rely on the time-consuming and laborious steps of tissue fixation, staining, labeling, or sectioning, he explains. So the technique can be used to diagnose basal cell carcinoma (a difficult type of skin cancer to treat) within a few minutes during Mohs surgery (microscopically controlled surgery).

The research has been published in the Proceedings of the National Academy of Sciences; for more information, please visit http://www.pnas.org/content/110/38/15189.abstract.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World