Synchrotron light identifies RNA double helix structure

Scientists at McGill University (Montreal, QC, Canada) have crystallized a short RNA sequence, poly (rA)11, and used data collected at the Canadian Light Source (CLS; Saskatoon, SK, Canada) and the Cornell High Energy Synchrotron (Ithaca, NY) to confirm the hypothesis of a poly (rA) double helix. Their discovery, building on 50 years' worth of work by various scientists, will have interesting applications for research in biological nanomaterials as well as in fabricating bionanomachines (devices derived from living organisms that can perform medical diagnostics).

Related: AFM collaboration produces first in-situ view of DNA's double helix

“Bionanomachines are advantageous because of their extremely small size, low production cost, and the ease of modification,” explains Kalle Gehring, a biochemistry professor at McGill University who led the work. “Many bionanomachines already affect our everyday lives as enzymes, sensors, biomaterials, and medical therapeutics.”

Gehring adds that proof of the RNA double helix may have diverse downstream benefits for the medical treatments and cures for diseases like AIDS, or even to help regenerate biological tissues. His team initially was looking for information about how cells turn mRNA into protein when they made their discovery.

For the experiments, Gehring and a team of researchers used data obtained at the CLS Canadian Macromolecular Crystallography Facility (CMCF) to successfully solve the structure of poly (rA)11 RNA. CMCF Beamline Scientist Michel Fodje said the experiments were successful in identifying the structure of the RNA and may have consequences for how genetic information is stored in cells.

Structure of poly (rA) duplex showing the two strands in orange/yellow and green/blue. Ammonium ions that stabilize the structure are shown as black balls. (Image courtesy of Kathryn Janzen, Canadian Light Source)

“Although DNA and RNA both carry genetic information, there are quite a few differences between them,” says Fodje. “mRNA molecules have poly (rA) tails, which are chemically identical to the molecules in the crystal. The poly (rA) structure may be physiologically important, especially under conditions where there is a high local concentration of mRNA. This can happen where cells are stressed and mRNA becomes concentrated in granules within cells.”

With this information, researchers will continue to map the diverse structures of RNA and their roles in the design of novel bionanomachines and in cells during times of stress.

Research on the poly (rA) structure was funded by grants from the Natural Sciences and Engineering Research Council of Canada with support from the Canada Foundation for Innovation, the Government of Quebec, Concordia University, and McGill University.

The research team's paper appears in the journal Angewandte Chemie International Edition; for more information, please visit http://onlinelibrary.wiley.com/doi/10.1002/anie.201303461/abstract.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Nanoparticles, NIR laser light combine to destroy cancer cells

A newly developed method that kills cancer cells using nanoparticles and near-infrared laser light.

Novel post-op patch delivers drug, gene, and light therapy to tumor sites

An adhesive patch can stick to a tumor site, either before or after surgery, to deliver a combination of drug, gene, and light therapy.

Low-level laser therapy is a potential noninvasive treatment for thrombocytopenia

Low-level laser therapy may offer a noninvasive, drug-free treatment for a potentially life-threatening bleeding disorder.

NIR light-activated nanoparticles can precisely target and treat tumors

Novel nanoparticles that use heat and near-infrared light can potentially target and ablate tumors with greater precision.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS