Super-res microscopy solves the structure of the nuclear pore

Scientists at the European Molecular Biology Laboratory (EMBL; Heidelberg, Germany) used super-resolution microscopy to solve a decade-long debate about the structure of the nuclear pore complex, which controls access to the genome by acting as a gate into the cell’s nucleus.

Related: Super-res microscopy technique views nanostructures 100 nm wide

The scientists knew the gate’s overall shape from electron tomography studies. And thanks to techniques like x-ray crystallography and single-particle electron microscopy, they knew that the ring which studs the nucleus' wall and controls what passes in and out is formed by 16 or 32 copies of a Y-shaped building block. They also knew that each Y is formed by nine proteins. But how the Ys are arranged to form a ring was up for debate.

“When we looked at our images, there was no question: they have to be lying head-to-tail around the hole,” says Anna Szymborska, who carried out the work.

To figure out how the Ys were arranged, the EMBL scientists used fluorescent tags to label a series of points along each of the Y’s arms and tail, and analyzed them under a super-resolution microscope. By combining images from thousands of nuclear pores, they were able to obtain measurements of where each of those points was, in relation to the pore’s center, with precision of less than 1 nm. The result was a rainbow of rings whose order and spacing meant the Y-shaped molecules in the nuclear pore must lie in an orderly circle around the opening, all with the same arm of the Y pointing toward the pore’s center.

Gates to the genome that is locked up inside the cell’s nucleus, as imaged by a super-resolution microscope
Gates to the genome that is locked up inside the cell’s nucleus, as imaged by a super-resolution microscope. By combining images of thousands of these gates, called nuclear pore complexes, scientists at the European Molecular Biology Laboratory (EMBL) have solved a decade-old controversy over how the pieces that form each pore’s ring are arranged. (Image courtesy of EMBL/A. Szymborska)

Having resolved this decade-old controversy, the scientists intend to delve deeper into the mysteries of the nuclear pore--determining whether the circle of Ys is arranged clockwise or anticlockwise, studying it at different stages of assembly, looking at other parts of the pore, and investigating it in three dimensions.

“There’s been a lot of interest from other groups,” says Jan Ellenberg, who led the work, “so we’ll soon be looking into a number of other molecular puzzles, like the different ‘machines’ that allow a cell to divide, which are also built from hundreds of pieces.”

The work was carried out in collaboration with John Briggs’ group at EMBL, who helped adapt the image averaging algorithms from electron microscopy to super-resolution microscopy, and Volker Cordes at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, who provided antibodies and advice.

The work appears in Science; for more information, please visit http://www.sciencemag.org/content/early/2013/07/10/science.1240672.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS