Quantitative imaging, optical microscopy pair to study living bacteria

Researchers from the Université de Paris-Sud (Sceaux, France) and CNRS Montpellier (Montpellier, France) used quantitative imaging (QI) to characterize living bacteria without any immobilization.

Related: Fluorescence imaging sees pigments inside live bacteria cells

Dr. Christian Marlière of the Institute of Molecular Sciences (ISMO) located at the Université Paris Sud, who led the research team, studied the dynamics and properties of living bacteria in purely controlled physiological conditions at the nanometer scale using atomic force microscopy (AFM) combined with optical microscopy methods having high spatial and temporal resolution, including fluorescence confocal microscopy, photo-activated localization microscopy (PALM), and total internal reflection fluorescence (TIRF) microscopy. Such dynamics and properties included motility or adhesion processes of bacteria on solid substrates, biofilms formation, the influence of light on moving properties of cyanobacteria, and the effects of antibiotics on bacterial membranes and biofilm, among others. Of particular importance was the correlation between the physical, chemical, and biological processes involved at the sub-micrometer scale around bacteria and their biofilms, plus the resulting variation of electrical signals as measured with common macroscopic methods such as electrical conductivity, impedance, or spontaneous potential measurements currently used in geophysics.

Dr. Christian Marlière and his PhD student, Samia Dhahri, are studying living and gliding bacteria
Dr. Christian Marlière and his PhD student, Samia Dhahri, are studying living and gliding bacteria.

Marlière says that using AFM (JPK Instruments' NanoWizard 3 system with a QI mode) in addition to optical microscopy methods enabled them to make measurements of local mechanical, electric, and electro-chemical properties at very well controlled spots on or over the bacteria. Also, he explains, they were able to image living bacteria by AFM in their physiological liquid environment without any external immobilization step. What's more, AFM allowed them to view the native gliding movements of some bacteria (such as cyanobacteria) and obtain important information about the gliding mechanism, he adds.

The lead author of the work was Samia Dhahri, one of Marlière's PhD students. For more information on the work, which appears in the journal PLoS ONE, please visit www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0061663.


Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World