Polymers could prolong life of lab-on-a-chip technology

Researchers at the National Institute of Standards and Technology (NIST; Boulder, CO) and the Naval Research Laboratory (NRL; Washington, DC) have addressed the issue of biosensor, or lab-on-a-chip, shelf life, showing how these chips could be made to last for months or more until needed.

NIST’s John Kasianowicz has spent decades trying to create technologies that will enable doctors to perform fast, real-time chemical analysis, and one promising approach involves building arrays of tiny pores, each small enough that only one protein or DNA molecule at a time can pass through and be identified. As our bodies respond to infection or other disease states, our cells release different proteins, and measuring the concentrations of these chemicals in a blood sample can provide a quick snapshot of our health. A membrane peppered with large numbers of these “nanopores” might give doctors a way to take that snapshot easily, if it could be mounted on a biochip compatible with electronics and computer technologies.

“But these chips need to have a long shelf life,” says Kasianowicz. “As it stands, we make nanopore membranes from fatty lipids that aren’t robust—the membranes only last a week or so. We wanted to extend that lifetime substantially.”

Kasianowicz’s and Devanand Shemoy’s (NRL) research teams explored the possibility of turning the lipids into polymers, the sorts of molecular chains used in plastics. Polymerizing the lipids made them tougher, but the question was whether doing so would somehow render the nanopores ineffective at trapping and identifying the blood serum proteins, because the process either squeezes or stretches the tiny membrane holes dramatically. Tests at NIST showed the nanopores performed just as well as before, meaning polymerized membranes could work on a biochip.

“Conceivably, chips made with polymerized membranes could last a year, perhaps much longer,” Kasianowicz says. “The nanopores still allow molecules to flow through for characterization.”

The NIST team patented the concept,1 which shows specifically that the nanopore will still function in a polymerized environment. Kasianowicz says the next step will be to demonstrate that the polymerized membranes will last when they have been attached to a chip, something their results have not yet shown.

A recent NIST patent shows that nanopores, which may one day help doctors perform quick analysis of blood samples, are not harmed by the polymerization process that could help nanopores operate in biochips
A recent NIST patent shows that nanopores, which may one day help doctors perform quick analysis of blood samples, are not harmed by the polymerization process that could help nanopores operate in biochips. Polymerization hardens and stabilizes the membrane surrounding the nanopores, both of which are beneficial effects. (Image courtesy of Robertson/NIST)

“We’re optimistic though—based on observations we’ve made in previous research, it should work in principle,” he says. “We hope this is the next step toward allowing medical professionals to judge health conditions based on immediate blood analysis, which should be more accurate than using day-old samples.”

REFERENCE
1. D.K. Shenoy, A. Singh, W.R. Barger, and J.J. Kasianowicz, "Method of stabilization of nanoscale pores for device applications," U.S. Patent 8,294,007 (October 23, 2012).

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Four-lens light-sheet microscope delivers whole-embryo images in real time

A team of researchers from the Max Planck Institute and Technical University (both in Dresden, Germany) has created the first microscope that processes image data in real time and provides the rese...

New intraocular lens has ability to restore sight accommodation

New research presented at the International Society of Presbyopia 5th Annual Conference on October 4, 2013, demonstrates the ability of the FluidVision foldable intraocular lens (IOL) from PowerVis...

OPHTHALMOLOGY/MICRO-OPTICS: Telescoping contact lens switches between magnified and normal vision

A telescoping contact lens able to switch between normal and magnified vision could someday improve vision for patients with age-related macular degeneration (AMD) and other eye diseases.

NANOTECHNOLOGY/LIGHT ACTIVATION: IR light method turns blood clotting on (like drugs) and off (like nothing else)

Gold nanoparticles, controlled by infrared (IR) light from a pulsed femtosecond laser, promise to promote wound healing and help doctors control blood clotting in patients undergoing surgery.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World