Cancer therapy method uses UVC pulse flash irradiation to destroy neoplastic cells

Scientists at the Tokai University School of Medicine (Isehara, Japan) have developed a new cancer therapy method using ultraviolet C (UVC) pulses of light.

The work, led by Johbu Itoh, employs high-intensity UVC pulse flash rays (UVCPFRs) of a broad UVC spectrum (230–280 nm) produced by a modified UV-flash sterilization system. Their experiments showed that the pulsed nature of the spectrum enhances the efficiency of destroying neoplastic cells. Under the appropriate UVC irradiation conditions only neoplastic cell were destroyed, and non-neoplastic cells did not reach conditions of cell death.

Sterilization effects of UVCPFRs show promise as a more efficient and rapid means of destroying a wider range of bacteria because this type of irradiation produces light whose energy is tens of thousands of times greater for a given area of irradiation, compared with conventional UV lamps (65 W equivalency).

The ultraviolet C (UVC) pulse flash irradiation only selectivity caused death of neoplastic cells, and not non-neoplastic cells
The ultraviolet C (UVC) pulse flash irradiation only selectivity caused death of neoplastic cells, and not non-neoplastic cells. (Image courtesy of the Tokai University School of Medicine)

The researchers irradiated cells with UVCPFRs at 1–10 continuous flashes per second to produce cell injury or functional obstruction only to the neoplastic cells. Higher UV radiation sensitivity in the UVC range was observed in neoplastic cells compared to non-neoplastic cells, so a short burst of UV radiation was sufficient enough to selectively induce injury and death to neoplastic cells.

Furthermore, their experiments showed that UVCPFRs caused cell death within a few seconds. Itoh and colleagues plan to develop this system for cancer treatment using endoscopy, laser microscopy, and other such light irradiation equipment.

Itoh will describe details of the findings at the International Congress of Histochemistry and Cytochemistry (ICHC 2012;, to take place August 26–29 in Kyoto, Japan.


Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Laser Focus World has gone mobile: Get all of the mobile-friendly options here.

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles
Sasi Palaniyappan and Rahul Shah inside a target chamber where the TRIDENT terawatt laser is aimed at a very thin foil target

Terawatt laser sheds light on laser-plasma interaction for cancer therapy development

Scientists at the Los Alamos National Laboratory (LANL) have observed for the first time how a laser penetrates dense, electron-rich plasma to generate ions. The process has applications for develo...

Live cells incubated with the polymer nanoparticles. The green color is the fluorescence coming from the molecules trapped within the nanoparticles

Switchable, glowing molecules promising for fluorescent probes

Scientists at the University of Miami college of Arts and Sciences have developed a method of switching fluorescent molecules on and off within aqueous environments, strategically trapping the mole...

Noiseless optical amplifier could boost biomedical imaging

Promising for biomedical imaging, researchers at NIST have demonstrated that they can amplify weak light signals without adding noise, while also carrying more pixels than other low-noise amplifier...

Iowa State University and Ames Laboratory researchers Sanjeevi Sivasankar, Chi-Fu Yen, and Hui Li have invented a microscopy method—standing wave axial nanometry (SWAN)—to study single biological molecules

Dual microscopy method studies single biological molecules

Pairing atomic force microscopy (AFM) and optical microscopy, researchers have developed a way to complete 3D measurements of single biological molecules with unprecedented accuracy and precision.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World