'Microbubbles' promising for early cancer screening garner research award

Coupling the chemical sensitivity of optical imaging and tissue-penetrating properties of ultrasound imaging, Carolyn Schutt, a Ph.D. student in bioengineering at the University of California, San Diego, is developing an imaging technique that could lead to highly sensitive light imaging deeper inside the body. The technique, which is promising for breast cancer diagnosis, received the grand prize at the UC San Diego Jacob School of Engineering Research Expo 2012, which took place last month.

Schutt's technique, which extracts chemical information from tissue scanned via ultrasound, uses gas-filled microbubble contrast agents that change their fluorescence intensity, or "blink," in response to the focused ultrasound. A solution of these microbubbles would be injected into the body to circulate through the bloodstream. When gas microbubbles encounter an ultrasound pressure wave, they contract and expand their outer surface in response to the pressure peaks and troughs. By loading the microbubble surface with a fluorescent dye that turns off when it is very close to other dye molecules, the ultrasound creates a blinking signal. Initially, less than 10% of the bubbles produced this modulating fluorescence. Analysis of the nanostructure by super-resolution microscopy showed that most of the dye partitioned into isolated clusters, which were likely preventing the dye from blinking in response to ultrasound. Schutt was able to manipulate the bubble nanostructure by heating the bubbles to melt their outer surface and distribute the dye more evenly, and then rapidly cooling them to lock in this distributed state. This melting and quick cooling process increased the fraction of blinking microbubbles to over 50%, making this a more viable imaging platform.

Bioengineering graduate student Carolyn Schutt won the Rudee Outstanding Poster Award for her research into a new imaging technique for breast cancer research
Bioengineering graduate student Carolyn Schutt won the Rudee Outstanding Poster Award for her research into a new imaging technique for breast cancer research. (Image courtesy of the UC San Diego Jacobs School of Engineering)

The blinking light can then be used to build up an image of the ultrasound-scanned tissue (a suspected tumor, for example) with the sensitivity and contrast offered by optical imaging. This capability could significantly improve present diagnostics as well as image-guided therapeutic capabilities. Schutt notes that X-ray mammography, the current standard, tends to yield a high false-positive rate, so the ability to extract chemical information could help to avoid unnecessary biopsies done on benign lesions.

Schutt, who was honored with the best poster award for the Department of NanoEngineering and Jacobs School-wide Rudee Outstanding Poster Award at the Research Expo, is also active in campus outreach and leadership programs. As a Gordon Scholar, Schutt participates in the Gordon Engineering Leadership Center’s engineering leadership programs. In her current position as outreach chair of the Bioengineering Graduate Student Society, Schutt organized the group’s exhibit at the recent San Diego Festival of Science and Engineering as well as a festival-wide science challenge for K-12 students to learn and discuss key science concepts.

For more information, please visit http://ucsdnews.ucsd.edu/newsrel/science/04-11OpticalImaging.asp.


Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS