Hyperspectral imaging device helps debunk wound healing

Hyperspectral imaging (HSI) devices, calibrated to new National Institute of Standards and Technology (NIST; Gaithersburg, MD) standard reference spectra, bring forth new insight on the physiology of tissue injury and healing. Currently, many physicians would prefer to use completely noninvasive HSI methods to measure the amount of oxygen (a key factor in wound healing) in widely affected tissue, which cannot be assessed without biopsies or transcutaneous techniques limited to a single point.

"Hyperspectral imaging isn't being used routinely in the clinic yet because standards aren't in place," says David Allen of the Sensor Science Division at NIST's Physical Measurement Laboratory (PML). Individual researchers doing their own experiments show positive results. But when you start comparing an instrument in one lab to an instrument in another, the data are typically inconsistent, he says. Factors limiting repeatable results include biological variability (variations in skin pigmentation, tissue density, lipid content, and blood volume changes), and sensor variability related to calibration and best practices in the measurement protocol.  While the biological variability is beyond researchers' control, the sensor variability can be minimized.

In pursuit of that goal, Allen and colleagues have now produced the first prototype "digital tissue phantoms" derived from bench-top simulations and in-vivo wound imaging. The new PML digital tissue phantoms (DTPs) are a set of specific spectral signatures and images that correspond to different states of hemoglobin oxygenation due to ischemia (inadequate blood flow), which ultimately result in cell death due to oxygen deprivation.

Ultimately, more extensive and clinically validated versions of the phantoms can be used to calibrate spectral imaging devices of various kinds. Those devices will be able to detect the telltale spectral evidence of ischemia, revascularization, assorted pathologies, and other conditions suggestive of tissue viability at a wound site, on a microvascular scale—even during surgery.

But in order for that to happen, there must be a well-characterized and clinically validated correspondence between particular spectral signature and particular tissue conditions. To tackle this, Allen and scientists from Ron Xu’s group at the Ohio State University (OSU) Biomedical Engineering Department (Columbus, OH) imaged carefully manipulated ischemic wounds in an anesthetized pig—the first time anybody has looked at a porcine skin flap animal model hyperspectrally, says Allen.

A hyperspectral line camera with four broadband light sources acquires images with the lens at center
A hyperspectral line camera with four broadband light sources acquires images with the lens at center. A typical scan captures images at hundreds of discrete wavelengths that differ by as little as 2 nm. (Image courtesy of the NIST Physical Measurement Laboratory [PML])

On two areas of the animal's back, flaps of skin were raised, silicone-plastic sheets were placed beneath the skin to inhibit reperfusion, and the incisions were closed. On adjacent areas were a skin flap without plastic sheets and an untreated control area. Allen scanned all the areas with a highly sensitive hyperspectral imager, using illumination from a standard broadband light source. In this work, a typical scan encompassed 240 different wavelengths, spaced about 2 nm apart, ranging from 400 to 880 nm. As a reflectance reference, each image also included light from a NIST-traceable standard diffuser. Readings at each wavelength were then stacked into "data cubes" for each scanned position. The group found that they could reproduce the tissue spectrum—including the oxygenation level of hemoglobin—to within one standard deviation, well within the natural variability of the tissue, says Allen.

Then, Allen's group received NIST funding to develop standards for the field. One part of their award supported use of a PML device called the hyperspectral image projector (HIP), developed by Joe Rice and others at NIST, which reproduces complex spectral-spatial images very accurately by precision control of digital micromirror devices.

A hyperspectral image such as this one, which integrates scans from 240 different wavelengths, can be used as a digital tissue phantom
A hyperspectral image such as this one, which integrates scans from 240 different wavelengths, can be used as a digital tissue phantom. The "data cube" for this image of a 15 x 5 cm ischemic wound combines readings from 740 individual lines and about 600 rows at 12 bits per pixel. (Image courtesy of the NIST Physical Measurement Laboratory [PML])

When medically significant hyperspectral scenes are projected, they are referred to as digital tissue phantoms. They allow realistic medical scenes to be produced repeatedly without the variability and expense that would occur if the medical procedure was repeated every time that a hyperspectral image was evaluated. Already Allen's group has been able to generate HIP-projectable spectral signatures that correspond to different levels of oxygenation in tissue.

Currently, accumulating the data for DTPs is a time-consuming process: Each scan takes from tens of seconds to a minute or more. But the group is working on 'snapshot' hyperspectral scans for real-time imaging, including video, says Allen. "Eventually, we want to get to the point at which you can see the blood perfusing through the tissue," he explains.

In addition to optical medical imaging, Allen is also investigating HSI's potential in environmental and defense applications, such as diseases of coral reefs and the detection of hidden explosive devices.


Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Merz acquires laser tattoo removal device maker ON Light Sciences

Merz North America has acquired ON Light Sciences, which develops technologies to enhance laser-based dermatology procedures.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Laser therapy extracts rare tumor that grew human hair, skin in boy's skull

About four years ago, a tumor comprised of human skin, hair, bone and cartilage was fast-growing inside a Ramsey, MN, 10-year-old youth's brain.

Low-level laser therapy could speed muscle recovery at Rio 2016 Olympics

The gold medal-winning women’s U.S. Gymnastics team is reportedly experimenting with infrared light therapy to alleviate pain and reduce swelling in its athletes. (Update: A spokesperson for ...

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World