One-step, 'smart' microcapsules useful as SERS substrate

Recognizing that being able to enclose materials in capsules between 10 and 100 μm in diameter, while accurately controlling both the capsule structure and the core contents, is a key concern in life sciences work, scientists at the University of Cambridge (Cambridge, England) have developed a technique for manufacturing ‘smart’ microcapsules in large quantities in one step—using tiny droplets of water. The release of the contents of the microcapsules can be highly controlled through the use of various stimuli. The capsules can be used as a substrate for surface-enhanced Raman spectroscopy (SERS), which enables the characterization and identification of molecules for applications such as medical diagnosis, forensic analysis, and environmental sensing.

Resulting from a collaboration between the research groups of Professor Chris Abell and Dr. Oren Scherman in the university's Department of Chemistry, the new technique uses copolymers, gold nanoparticles, and small barrel-shaped molecules called cucurbiturils (CBs) to form the microcapsules, thereby bringing the materials together at the oil-water interface.

Researchers have developed a one-step technique to fabricate microcapsules, which have use in surface-enhanced Raman spectroscopy (SERS) to characterize and identify molecules in applications like in medical diagnostics, among others
Researchers have developed a one-step technique to fabricate microcapsules, which have use in surface-enhanced Raman spectroscopy (SERS) to characterize and identify molecules in applications like in medical diagnostics, among others. (Image courtesy of the University of Cambridge)

"The technique provides several advantages over current methods, as all of the components for the microcapsules are added at once and assemble instantaneously at room temperature," says Jing Zhang, a Ph.D. student in Professor Abell’s research group and lead author of the study. Various 'cargos' can be efficiently loaded simultaneously during the formation of the microcapsules; the dynamic supramolecular interactions allow control over the porosity of the capsules and the timed release of their contents using stimuli such as light, pH, and temperature, she says.

The Engineering and Physical Sciences Research Council (EPSRC), the European Union, and the European Research Council (ERC) funded the work. Its commercialization is supported by an ERC Proof of Concept grant, which was awarded to Scherman.

Full details of the work, which was published in Science, may be found at


Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Merz acquires laser tattoo removal device maker ON Light Sciences

Merz North America has acquired ON Light Sciences, which develops technologies to enhance laser-based dermatology procedures.

Shortwave-infrared device could improve ear infection diagnosis

An otoscope-like device that could improve ear infection diagnosis uses shortwave-infrared light instead of visible light.

Laser therapy extracts rare tumor that grew human hair, skin in boy's skull

About four years ago, a tumor comprised of human skin, hair, bone and cartilage was fast-growing inside a Ramsey, MN, 10-year-old youth's brain.

Low-level laser therapy could speed muscle recovery at Rio 2016 Olympics

The gold medal-winning women’s U.S. Gymnastics team is reportedly experimenting with infrared light therapy to alleviate pain and reduce swelling in its athletes. (Update: A spokesperson for ...

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS